纳米技术辅助联合给药:治疗急性髓性白血病的渐进方法。

IF 3 Q2 PHARMACOLOGY & PHARMACY
Therapeutic delivery Pub Date : 2024-01-01 Epub Date: 2024-09-13 DOI:10.1080/20415990.2024.2394012
Neelam Poonia, Nikita Vijay Jadhav, Davuluri Mamatha, Manoj Garg, Atul Kabra, Amit Bhatia, Shreesh Ojha, Viney Lather, Deepti Pandita
{"title":"纳米技术辅助联合给药:治疗急性髓性白血病的渐进方法。","authors":"Neelam Poonia, Nikita Vijay Jadhav, Davuluri Mamatha, Manoj Garg, Atul Kabra, Amit Bhatia, Shreesh Ojha, Viney Lather, Deepti Pandita","doi":"10.1080/20415990.2024.2394012","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia (AML), a heterogeneous hematopoietic cancer prevalent in adults, has been a leading cause of leukemia-associated deaths for decades. Despite advancements in understanding its pathology and pharmacological targets, therapeutic strategies have seen minimal change. The standard treatment, combining cytarabine and anthracycline, has persisted, accompanied by challenges such as pharmacokinetic issues and non-specific drug delivery, leading to severe side effects. Nanotechnology offers a promising solution through combination drug delivery. FDA-approved CPX351 (VYXEOS™) a liposomal formulation delivering doxorubicin and cytarabine, exemplifies enhanced therapeutic efficacy. Ongoing research explores various nanocarriers for delivering multiple bioactives, addressing drug targeting, pharmacokinetics and chemoresistance. This review highlights nanotechnology-based combination therapies for the effective management of AML, presenting a potential breakthrough in leukemia.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"893-910"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497954/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanotechnology-assisted combination drug delivery: a progressive approach for the treatment of acute myeloid leukemia.\",\"authors\":\"Neelam Poonia, Nikita Vijay Jadhav, Davuluri Mamatha, Manoj Garg, Atul Kabra, Amit Bhatia, Shreesh Ojha, Viney Lather, Deepti Pandita\",\"doi\":\"10.1080/20415990.2024.2394012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute myeloid leukemia (AML), a heterogeneous hematopoietic cancer prevalent in adults, has been a leading cause of leukemia-associated deaths for decades. Despite advancements in understanding its pathology and pharmacological targets, therapeutic strategies have seen minimal change. The standard treatment, combining cytarabine and anthracycline, has persisted, accompanied by challenges such as pharmacokinetic issues and non-specific drug delivery, leading to severe side effects. Nanotechnology offers a promising solution through combination drug delivery. FDA-approved CPX351 (VYXEOS™) a liposomal formulation delivering doxorubicin and cytarabine, exemplifies enhanced therapeutic efficacy. Ongoing research explores various nanocarriers for delivering multiple bioactives, addressing drug targeting, pharmacokinetics and chemoresistance. This review highlights nanotechnology-based combination therapies for the effective management of AML, presenting a potential breakthrough in leukemia.</p>\",\"PeriodicalId\":22959,\"journal\":{\"name\":\"Therapeutic delivery\",\"volume\":\" \",\"pages\":\"893-910\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497954/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Therapeutic delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20415990.2024.2394012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20415990.2024.2394012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

急性髓性白血病(AML)是一种多发于成人的异质性造血癌症,几十年来一直是白血病相关死亡的主要原因。尽管人们对其病理和药理靶点的认识不断进步,但治疗策略的改变却微乎其微。将阿糖胞苷和蒽环类药物结合使用的标准治疗方法一直沿用至今,但却面临着药代动力学问题和非特异性给药等挑战,导致严重的副作用。纳米技术通过联合给药提供了一种前景广阔的解决方案。美国食品和药物管理局批准的 CPX351(VYXEOS™)是一种可递送多柔比星和阿糖胞苷的脂质体制剂,是提高疗效的典范。目前正在进行的研究探索了多种纳米载体,用于递送多种生物活性物质,解决药物靶向、药代动力学和化疗耐药性等问题。本综述重点介绍了有效治疗急性髓细胞性白血病的纳米技术联合疗法,为白血病领域带来了潜在的突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanotechnology-assisted combination drug delivery: a progressive approach for the treatment of acute myeloid leukemia.

Acute myeloid leukemia (AML), a heterogeneous hematopoietic cancer prevalent in adults, has been a leading cause of leukemia-associated deaths for decades. Despite advancements in understanding its pathology and pharmacological targets, therapeutic strategies have seen minimal change. The standard treatment, combining cytarabine and anthracycline, has persisted, accompanied by challenges such as pharmacokinetic issues and non-specific drug delivery, leading to severe side effects. Nanotechnology offers a promising solution through combination drug delivery. FDA-approved CPX351 (VYXEOS™) a liposomal formulation delivering doxorubicin and cytarabine, exemplifies enhanced therapeutic efficacy. Ongoing research explores various nanocarriers for delivering multiple bioactives, addressing drug targeting, pharmacokinetics and chemoresistance. This review highlights nanotechnology-based combination therapies for the effective management of AML, presenting a potential breakthrough in leukemia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Therapeutic delivery
Therapeutic delivery PHARMACOLOGY & PHARMACY-
CiteScore
5.50
自引率
0.00%
发文量
25
期刊介绍: Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信