{"title":"诊断数字时代的白内障:人工智能、元宇宙和数字孪生应用调查。","authors":"Aida Jones, Thulasi Bai Vijayan, Sheila John","doi":"10.1080/08820538.2024.2403436","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The study explores the evolving landscape of cataract diagnosis, focusing on both traditional methods and innovative technological integrations. It aims to address challenges with subjectivity in traditional cataract grading and to evaluate how new technologies can enhance diagnostic accuracy and accessibility.</p><p><strong>Methods: </strong>The research introduces and examines the use of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in automating and improving cataract screening processes. It also explores the role of the Metaverse, Digital Twins, and Teleophthalmology for immersive patient education, real-time virtual replicas of eyes, and remote access to specialized care.</p><p><strong>Results: </strong>Various ML and DL techniques demonstrated significant accuracy in cataract detection. The integration of these technologies, along with the Metaverse, Digital Twins, and Teleophthalmology, provides a comprehensive framework for accurate and accessible cataract diagnosis.</p><p><strong>Conclusion: </strong>There is a notable paradigm shift toward individualized, predictive, and transformative eye care. The advancements in technology address existing diagnostic challenges and mitigate the shortage of ophthalmologists by extending high-quality care to underserved regions. These developments pave the way for improved cataract management and broader accessibility.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnosing Cataracts in the Digital Age: A Survey on AI, Metaverse, and Digital Twin Applications.\",\"authors\":\"Aida Jones, Thulasi Bai Vijayan, Sheila John\",\"doi\":\"10.1080/08820538.2024.2403436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The study explores the evolving landscape of cataract diagnosis, focusing on both traditional methods and innovative technological integrations. It aims to address challenges with subjectivity in traditional cataract grading and to evaluate how new technologies can enhance diagnostic accuracy and accessibility.</p><p><strong>Methods: </strong>The research introduces and examines the use of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in automating and improving cataract screening processes. It also explores the role of the Metaverse, Digital Twins, and Teleophthalmology for immersive patient education, real-time virtual replicas of eyes, and remote access to specialized care.</p><p><strong>Results: </strong>Various ML and DL techniques demonstrated significant accuracy in cataract detection. The integration of these technologies, along with the Metaverse, Digital Twins, and Teleophthalmology, provides a comprehensive framework for accurate and accessible cataract diagnosis.</p><p><strong>Conclusion: </strong>There is a notable paradigm shift toward individualized, predictive, and transformative eye care. The advancements in technology address existing diagnostic challenges and mitigate the shortage of ophthalmologists by extending high-quality care to underserved regions. These developments pave the way for improved cataract management and broader accessibility.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08820538.2024.2403436\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08820538.2024.2403436","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Diagnosing Cataracts in the Digital Age: A Survey on AI, Metaverse, and Digital Twin Applications.
Purpose: The study explores the evolving landscape of cataract diagnosis, focusing on both traditional methods and innovative technological integrations. It aims to address challenges with subjectivity in traditional cataract grading and to evaluate how new technologies can enhance diagnostic accuracy and accessibility.
Methods: The research introduces and examines the use of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in automating and improving cataract screening processes. It also explores the role of the Metaverse, Digital Twins, and Teleophthalmology for immersive patient education, real-time virtual replicas of eyes, and remote access to specialized care.
Results: Various ML and DL techniques demonstrated significant accuracy in cataract detection. The integration of these technologies, along with the Metaverse, Digital Twins, and Teleophthalmology, provides a comprehensive framework for accurate and accessible cataract diagnosis.
Conclusion: There is a notable paradigm shift toward individualized, predictive, and transformative eye care. The advancements in technology address existing diagnostic challenges and mitigate the shortage of ophthalmologists by extending high-quality care to underserved regions. These developments pave the way for improved cataract management and broader accessibility.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.