Reyon Dcunha, Sadhana P Mutalik, Reethu Ann Reji, Srinivas Mutalik, Sneha Guruprasad Kalthur, Padmaraj Hegde, M S Murari, Shamprasad Varija Raghu, Shreetama Banerjee, Anujith Kumar, Satish Kumar Adiga, Yulian Zhao, Nagarajan Kannan, Guruprasad Kalthur
{"title":"基于脂质体的冷冻介质改善了小鼠青春期前睾丸组织冷冻保存的结果","authors":"Reyon Dcunha, Sadhana P Mutalik, Reethu Ann Reji, Srinivas Mutalik, Sneha Guruprasad Kalthur, Padmaraj Hegde, M S Murari, Shamprasad Varija Raghu, Shreetama Banerjee, Anujith Kumar, Satish Kumar Adiga, Yulian Zhao, Nagarajan Kannan, Guruprasad Kalthur","doi":"10.1007/s43032-024-01688-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cryopreservation of testicular tissue holds an important role in the field of fertility preservation, particularly for prepubertal boys diagnosed with cancer. However, prepubertal testicular tissue cryopreservation is still considered to be in the experimental stage necessitating the refinement of cryopreservation protocol. Considering the fact that loss of membrane lipids is the primary cause of freeze-thaw-induced loss of testicular cell functions, in this study, we explored the beneficial properties of exogenous supplementation of membrane lipids in the form of liposomes in enhancing the cryosurvival of prepubertal testicular tissue. The freezing medium supplemented with liposomes (prepared from soy lecithin, phosphatidylethanolamine, phosphatidylserine, and cholesterol) was used for the experiments. Prepubertal testicular tissues from Swiss albino mice were cryopreserved in a liposome-containing freezing medium (LFM) composed of 0.25 mg/mL liposomes, 5% DMSO, and 30% FCS in the DMEM/F12 medium using a slow freezing protocol. The tissues were thawed and assessed for various testicular cell functions. Freezing in LFM mitigated the loss of viability, decreased malondialdehyde level (p < 0.05), and reduced apoptosis (p < 0.05) in the testicular cells compared to the testicular tissue cryopreserved in the control freezing medium (CFM). Further, DMSO (5%) appears to be the ideal penetrating cryoprotectant for prepubertal testicular tissue cryopreservation with liposome-based freezing medium. Similar enhancement in cryosurvival of cells was observed in adult human testicular tissue frozen with LFM. These findings highlight the translational value of liposome-based freezing medium in the cryopreservation of testicular tissue of prepubertal boys undergoing chemotherapy.</p>","PeriodicalId":20920,"journal":{"name":"Reproductive Sciences","volume":" ","pages":"3532-3548"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527951/pdf/","citationCount":"0","resultStr":"{\"title\":\"Liposome-based Freezing Medium Improves the Outcome of Mouse Prepubertal Testicular Tissue Cryopreservation.\",\"authors\":\"Reyon Dcunha, Sadhana P Mutalik, Reethu Ann Reji, Srinivas Mutalik, Sneha Guruprasad Kalthur, Padmaraj Hegde, M S Murari, Shamprasad Varija Raghu, Shreetama Banerjee, Anujith Kumar, Satish Kumar Adiga, Yulian Zhao, Nagarajan Kannan, Guruprasad Kalthur\",\"doi\":\"10.1007/s43032-024-01688-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cryopreservation of testicular tissue holds an important role in the field of fertility preservation, particularly for prepubertal boys diagnosed with cancer. However, prepubertal testicular tissue cryopreservation is still considered to be in the experimental stage necessitating the refinement of cryopreservation protocol. Considering the fact that loss of membrane lipids is the primary cause of freeze-thaw-induced loss of testicular cell functions, in this study, we explored the beneficial properties of exogenous supplementation of membrane lipids in the form of liposomes in enhancing the cryosurvival of prepubertal testicular tissue. The freezing medium supplemented with liposomes (prepared from soy lecithin, phosphatidylethanolamine, phosphatidylserine, and cholesterol) was used for the experiments. Prepubertal testicular tissues from Swiss albino mice were cryopreserved in a liposome-containing freezing medium (LFM) composed of 0.25 mg/mL liposomes, 5% DMSO, and 30% FCS in the DMEM/F12 medium using a slow freezing protocol. The tissues were thawed and assessed for various testicular cell functions. Freezing in LFM mitigated the loss of viability, decreased malondialdehyde level (p < 0.05), and reduced apoptosis (p < 0.05) in the testicular cells compared to the testicular tissue cryopreserved in the control freezing medium (CFM). Further, DMSO (5%) appears to be the ideal penetrating cryoprotectant for prepubertal testicular tissue cryopreservation with liposome-based freezing medium. Similar enhancement in cryosurvival of cells was observed in adult human testicular tissue frozen with LFM. These findings highlight the translational value of liposome-based freezing medium in the cryopreservation of testicular tissue of prepubertal boys undergoing chemotherapy.</p>\",\"PeriodicalId\":20920,\"journal\":{\"name\":\"Reproductive Sciences\",\"volume\":\" \",\"pages\":\"3532-3548\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527951/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproductive Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s43032-024-01688-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43032-024-01688-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
Liposome-based Freezing Medium Improves the Outcome of Mouse Prepubertal Testicular Tissue Cryopreservation.
Cryopreservation of testicular tissue holds an important role in the field of fertility preservation, particularly for prepubertal boys diagnosed with cancer. However, prepubertal testicular tissue cryopreservation is still considered to be in the experimental stage necessitating the refinement of cryopreservation protocol. Considering the fact that loss of membrane lipids is the primary cause of freeze-thaw-induced loss of testicular cell functions, in this study, we explored the beneficial properties of exogenous supplementation of membrane lipids in the form of liposomes in enhancing the cryosurvival of prepubertal testicular tissue. The freezing medium supplemented with liposomes (prepared from soy lecithin, phosphatidylethanolamine, phosphatidylserine, and cholesterol) was used for the experiments. Prepubertal testicular tissues from Swiss albino mice were cryopreserved in a liposome-containing freezing medium (LFM) composed of 0.25 mg/mL liposomes, 5% DMSO, and 30% FCS in the DMEM/F12 medium using a slow freezing protocol. The tissues were thawed and assessed for various testicular cell functions. Freezing in LFM mitigated the loss of viability, decreased malondialdehyde level (p < 0.05), and reduced apoptosis (p < 0.05) in the testicular cells compared to the testicular tissue cryopreserved in the control freezing medium (CFM). Further, DMSO (5%) appears to be the ideal penetrating cryoprotectant for prepubertal testicular tissue cryopreservation with liposome-based freezing medium. Similar enhancement in cryosurvival of cells was observed in adult human testicular tissue frozen with LFM. These findings highlight the translational value of liposome-based freezing medium in the cryopreservation of testicular tissue of prepubertal boys undergoing chemotherapy.
期刊介绍:
Reproductive Sciences (RS) is a peer-reviewed, monthly journal publishing original research and reviews in obstetrics and gynecology. RS is multi-disciplinary and includes research in basic reproductive biology and medicine, maternal-fetal medicine, obstetrics, gynecology, reproductive endocrinology, urogynecology, fertility/infertility, embryology, gynecologic/reproductive oncology, developmental biology, stem cell research, molecular/cellular biology and other related fields.