Marcelo Rafanelli Rosatti , Luciane H. Gargaglioni , Mirela B. Dias
{"title":"在未麻醉的大鼠体内,下丘脑外侧星形胶质细胞以光暗周期依赖的方式促进高碳酸血症化学反射。","authors":"Marcelo Rafanelli Rosatti , Luciane H. Gargaglioni , Mirela B. Dias","doi":"10.1016/j.resp.2024.104352","DOIUrl":null,"url":null,"abstract":"<div><div>Brainstem astrocytes are important for CO<sub>2</sub><sup>/</sup>H<sup>+</sup> chemoreception. Lateral Hypothalamus/Perifornicial Area (LH/PFA) neurons have an excitatory effect on the ventilatory response to CO<sub>2</sub>, however the role of the astrocytes is unknown. We hypothesized that LH/PFA astrocytes play an excitatory role in the hypercapnic ventilatory response in a sleep-wake and light-dark cycles-dependent manner. We manipulated the activity of astrocytes in the LH/PFA of male Wistar rats through microinjection of Fluorocitrate (Fct), which selectively affects astrocytes, inducing the exocytosis of gliotransmitters. We investigated the effects of intra-LH/PFA Fct microinjection on resting breathing and ventilatory responses to hypercapnia and hypoxia during wakefulness and NREM sleep, in the light and dark phases. Fct increased ventilation during hypercapnia but not during room air or hypoxia. The hypercapnic chemoreflex was increased exclusively during the dark-active phase during both, wakefulness and NREM sleep, indicating that LH/PFA astrocytes play an excitatory role in hypercapnic ventilatory response in a light-dark cycle-dependent manner.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"331 ","pages":"Article 104352"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lateral hypothalamic astrocytes contribute to the hypercapnic chemoreflex in a light-dark cycle-dependent manner in unanesthetized rats\",\"authors\":\"Marcelo Rafanelli Rosatti , Luciane H. Gargaglioni , Mirela B. Dias\",\"doi\":\"10.1016/j.resp.2024.104352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Brainstem astrocytes are important for CO<sub>2</sub><sup>/</sup>H<sup>+</sup> chemoreception. Lateral Hypothalamus/Perifornicial Area (LH/PFA) neurons have an excitatory effect on the ventilatory response to CO<sub>2</sub>, however the role of the astrocytes is unknown. We hypothesized that LH/PFA astrocytes play an excitatory role in the hypercapnic ventilatory response in a sleep-wake and light-dark cycles-dependent manner. We manipulated the activity of astrocytes in the LH/PFA of male Wistar rats through microinjection of Fluorocitrate (Fct), which selectively affects astrocytes, inducing the exocytosis of gliotransmitters. We investigated the effects of intra-LH/PFA Fct microinjection on resting breathing and ventilatory responses to hypercapnia and hypoxia during wakefulness and NREM sleep, in the light and dark phases. Fct increased ventilation during hypercapnia but not during room air or hypoxia. The hypercapnic chemoreflex was increased exclusively during the dark-active phase during both, wakefulness and NREM sleep, indicating that LH/PFA astrocytes play an excitatory role in hypercapnic ventilatory response in a light-dark cycle-dependent manner.</div></div>\",\"PeriodicalId\":20961,\"journal\":{\"name\":\"Respiratory Physiology & Neurobiology\",\"volume\":\"331 \",\"pages\":\"Article 104352\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Physiology & Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569904824001459\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904824001459","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Lateral hypothalamic astrocytes contribute to the hypercapnic chemoreflex in a light-dark cycle-dependent manner in unanesthetized rats
Brainstem astrocytes are important for CO2/H+ chemoreception. Lateral Hypothalamus/Perifornicial Area (LH/PFA) neurons have an excitatory effect on the ventilatory response to CO2, however the role of the astrocytes is unknown. We hypothesized that LH/PFA astrocytes play an excitatory role in the hypercapnic ventilatory response in a sleep-wake and light-dark cycles-dependent manner. We manipulated the activity of astrocytes in the LH/PFA of male Wistar rats through microinjection of Fluorocitrate (Fct), which selectively affects astrocytes, inducing the exocytosis of gliotransmitters. We investigated the effects of intra-LH/PFA Fct microinjection on resting breathing and ventilatory responses to hypercapnia and hypoxia during wakefulness and NREM sleep, in the light and dark phases. Fct increased ventilation during hypercapnia but not during room air or hypoxia. The hypercapnic chemoreflex was increased exclusively during the dark-active phase during both, wakefulness and NREM sleep, indicating that LH/PFA astrocytes play an excitatory role in hypercapnic ventilatory response in a light-dark cycle-dependent manner.
期刊介绍:
Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense.
Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as:
-Mechanics of breathing-
Gas exchange and acid-base balance-
Respiration at rest and exercise-
Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen-
Embryonic and adult respiration-
Comparative respiratory physiology.
Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.