PDHX 乙酰化通过破坏 PDC 组装和激活乳化介导的基因表达,促进肿瘤进展。

IF 13.6 1区 生物学 Q1 CELL BIOLOGY
Zetan Jiang, Nanchi Xiong, Ronghui Yan, Shi-Ting Li, Haiying Liu, Qiankun Mao, Yuchen Sun, Shengqi Shen, Ling Ye, Ping Gao, Pinggen Zhang, Weidong Jia, Huafeng Zhang
{"title":"PDHX 乙酰化通过破坏 PDC 组装和激活乳化介导的基因表达,促进肿瘤进展。","authors":"Zetan Jiang, Nanchi Xiong, Ronghui Yan, Shi-Ting Li, Haiying Liu, Qiankun Mao, Yuchen Sun, Shengqi Shen, Ling Ye, Ping Gao, Pinggen Zhang, Weidong Jia, Huafeng Zhang","doi":"10.1093/procel/pwae052","DOIUrl":null,"url":null,"abstract":"<p><p>Deactivation of the mitochondrial pyruvate dehydrogenase complex (PDC) is important for the metabolic switching of cancer cell from oxidative phosphorylation to aerobic glycolysis. Studies examining PDC activity regulation have mainly focused on the phosphorylation of pyruvate dehydrogenase (E1), leaving other post-translational modifications largely unexplored. Here, we demonstrate that the acetylation of Lys 488 of pyruvate dehydrogenase complex component X (PDHX) commonly occurs in hepatocellular carcinoma, disrupting PDC assembly and contributing to lactate-driven epigenetic control of gene expression. PDHX, an E3-binding protein in the PDC, is acetylated by the p300 at Lys 488, impeding the interaction between PDHX and dihydrolipoyl transacetylase (E2), thereby disrupting PDC assembly to inhibit its activation. PDC disruption results in the conversion of most glucose to lactate, contributing to the aerobic glycolysis and H3K56 lactylation-mediated gene expression, facilitating tumor progression. These findings highlight a previously unrecognized role of PDHX acetylation in regulating PDC assembly and activity, linking PDHX Lys 488 acetylation and histone lactylation during hepatocellular carcinoma progression and providing a potential biomarker and therapeutic target for further development.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"49-63"},"PeriodicalIF":13.6000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PDHX acetylation facilitates tumor progression by disrupting PDC assembly and activating lactylation-mediated gene expression.\",\"authors\":\"Zetan Jiang, Nanchi Xiong, Ronghui Yan, Shi-Ting Li, Haiying Liu, Qiankun Mao, Yuchen Sun, Shengqi Shen, Ling Ye, Ping Gao, Pinggen Zhang, Weidong Jia, Huafeng Zhang\",\"doi\":\"10.1093/procel/pwae052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deactivation of the mitochondrial pyruvate dehydrogenase complex (PDC) is important for the metabolic switching of cancer cell from oxidative phosphorylation to aerobic glycolysis. Studies examining PDC activity regulation have mainly focused on the phosphorylation of pyruvate dehydrogenase (E1), leaving other post-translational modifications largely unexplored. Here, we demonstrate that the acetylation of Lys 488 of pyruvate dehydrogenase complex component X (PDHX) commonly occurs in hepatocellular carcinoma, disrupting PDC assembly and contributing to lactate-driven epigenetic control of gene expression. PDHX, an E3-binding protein in the PDC, is acetylated by the p300 at Lys 488, impeding the interaction between PDHX and dihydrolipoyl transacetylase (E2), thereby disrupting PDC assembly to inhibit its activation. PDC disruption results in the conversion of most glucose to lactate, contributing to the aerobic glycolysis and H3K56 lactylation-mediated gene expression, facilitating tumor progression. These findings highlight a previously unrecognized role of PDHX acetylation in regulating PDC assembly and activity, linking PDHX Lys 488 acetylation and histone lactylation during hepatocellular carcinoma progression and providing a potential biomarker and therapeutic target for further development.</p>\",\"PeriodicalId\":20790,\"journal\":{\"name\":\"Protein & Cell\",\"volume\":\" \",\"pages\":\"49-63\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein & Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/procel/pwae052\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein & Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/procel/pwae052","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体丙酮酸脱氢酶复合物(PDC)的失活对于癌细胞从氧化磷酸化到有氧糖酵解的代谢转换非常重要。对 PDC 活性调控的研究主要集中在丙酮酸脱氢酶(PDH,E1)的磷酸化上,而对其他翻译后修饰(PTMs)的研究则很少。在这里,我们证明了丙酮酸脱氢酶复合物成分 X(PDHX)的 Lys 488 乙酰化通常发生在肝细胞癌(HCC)中,它会破坏 PDC 的组装,并导致乳酸驱动的基因表达表观遗传学控制。PDHX 是 PDC 中的 E3 结合蛋白(E3BP),被 p300 在 Lys 488 处乙酰化,阻碍了 PDHX 与二氢脂酰转乙酰酶(DLAT,E2)之间的相互作用,从而破坏了 PDC 的组装,抑制了其活化。PDC 的破坏会导致大部分葡萄糖转化为乳酸,从而促进有氧糖酵解和 H3K56 乳酰化介导的基因表达,促进肿瘤的进展。这些发现突显了 PDHX 乙酰化在调节 PDC 组装和活性方面以前未被认识到的作用,将 HCC 进展过程中的 PDHX Lys 488 乙酰化和组蛋白乳酰化联系起来,为进一步开发提供了潜在的生物标志物和治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PDHX acetylation facilitates tumor progression by disrupting PDC assembly and activating lactylation-mediated gene expression.

Deactivation of the mitochondrial pyruvate dehydrogenase complex (PDC) is important for the metabolic switching of cancer cell from oxidative phosphorylation to aerobic glycolysis. Studies examining PDC activity regulation have mainly focused on the phosphorylation of pyruvate dehydrogenase (E1), leaving other post-translational modifications largely unexplored. Here, we demonstrate that the acetylation of Lys 488 of pyruvate dehydrogenase complex component X (PDHX) commonly occurs in hepatocellular carcinoma, disrupting PDC assembly and contributing to lactate-driven epigenetic control of gene expression. PDHX, an E3-binding protein in the PDC, is acetylated by the p300 at Lys 488, impeding the interaction between PDHX and dihydrolipoyl transacetylase (E2), thereby disrupting PDC assembly to inhibit its activation. PDC disruption results in the conversion of most glucose to lactate, contributing to the aerobic glycolysis and H3K56 lactylation-mediated gene expression, facilitating tumor progression. These findings highlight a previously unrecognized role of PDHX acetylation in regulating PDC assembly and activity, linking PDHX Lys 488 acetylation and histone lactylation during hepatocellular carcinoma progression and providing a potential biomarker and therapeutic target for further development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein & Cell
Protein & Cell CELL BIOLOGY-
CiteScore
24.00
自引率
0.90%
发文量
1029
审稿时长
6-12 weeks
期刊介绍: Protein & Cell is a monthly, peer-reviewed, open-access journal focusing on multidisciplinary aspects of biology and biomedicine, with a primary emphasis on protein and cell research. It publishes original research articles, reviews, and commentaries across various fields including biochemistry, biophysics, cell biology, genetics, immunology, microbiology, molecular biology, neuroscience, oncology, protein science, structural biology, and translational medicine. The journal also features content on research policies, funding trends in China, and serves as a platform for academic exchange among life science researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信