利用实验统计设计优化新型肠球菌的外多糖生产。

IF 2 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Shivani Singh Gaur, Uday S Annapure
{"title":"利用实验统计设计优化新型肠球菌的外多糖生产。","authors":"Shivani Singh Gaur, Uday S Annapure","doi":"10.1080/10826068.2024.2402337","DOIUrl":null,"url":null,"abstract":"<p><p>The Exopolysaccharide (EPS) producing novel strains of <i>Enterococcus</i> previously isolated from the vaginal source of pregnant women were selected based on ropy structure formation. The two selected strains, <i>E.villorum SB-2</i> and <i>E.rivorum S22-3,</i> were found to be producing 2.87 g/l and 3.14 g/l EPS, respectively, in the minimal media (M17 media) after 24-hour fermentation under anaerobic condition. Both the strains have probiotic properties and have the potential to be used for industrial applications. The production media and fermentation conditions were optimized to enhance the EPS production using the one-factor method, Placket-Burman factorial designing and Central composite design (CCD) of Response surface methodology (RSM). The most relevant factors affecting the EPS yield were sucrose, yeast extract and pH for E.villorum SB2 and sucrose, yeast extract and magnesium sulfate for the <i>E.rivorum S22-3</i> as determined by Placket-Burman design, whose concentrations were further optimized using CCD. The optimized fermentation conditions gave the total EPS of 9.76 g/l (4 times the initial production) from <i>E.villorum SB-2</i> and 7.74 g/l (2.5 times the initial production) from <i>E.rivorum S22-3</i>, respectively, after 36-hour incubation at 37 °C. These optimization studies might be helpful during scale-up process for the industrial scale production of these exopolysaccharide.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of exopolysaccharide production from the novel <i>Enterococcus</i> species, using statistical design of experiment.\",\"authors\":\"Shivani Singh Gaur, Uday S Annapure\",\"doi\":\"10.1080/10826068.2024.2402337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Exopolysaccharide (EPS) producing novel strains of <i>Enterococcus</i> previously isolated from the vaginal source of pregnant women were selected based on ropy structure formation. The two selected strains, <i>E.villorum SB-2</i> and <i>E.rivorum S22-3,</i> were found to be producing 2.87 g/l and 3.14 g/l EPS, respectively, in the minimal media (M17 media) after 24-hour fermentation under anaerobic condition. Both the strains have probiotic properties and have the potential to be used for industrial applications. The production media and fermentation conditions were optimized to enhance the EPS production using the one-factor method, Placket-Burman factorial designing and Central composite design (CCD) of Response surface methodology (RSM). The most relevant factors affecting the EPS yield were sucrose, yeast extract and pH for E.villorum SB2 and sucrose, yeast extract and magnesium sulfate for the <i>E.rivorum S22-3</i> as determined by Placket-Burman design, whose concentrations were further optimized using CCD. The optimized fermentation conditions gave the total EPS of 9.76 g/l (4 times the initial production) from <i>E.villorum SB-2</i> and 7.74 g/l (2.5 times the initial production) from <i>E.rivorum S22-3</i>, respectively, after 36-hour incubation at 37 °C. These optimization studies might be helpful during scale-up process for the industrial scale production of these exopolysaccharide.</p>\",\"PeriodicalId\":20401,\"journal\":{\"name\":\"Preparative Biochemistry & Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2024.2402337\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2024.2402337","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

根据多糖结构的形成情况,筛选出了先前从孕妇阴道中分离出的可产生多糖(EPS)的新型肠球菌菌株。在厌氧条件下发酵 24 小时后,发现所选的两株菌株(E.villorum SB-2 和 E.rivorum S22-3)在最小培养基(M17 培养基)中分别能产生 2.87 克/升和 3.14 克/升的 EPS。这两种菌株都具有益生特性,有可能用于工业应用。采用单因素法、Placket-Burman 因子设计和响应面方法(RSM)的中央复合设计(CCD)对生产培养基和发酵条件进行了优化,以提高 EPS 产量。通过 Placket-Burman 设计确定,影响 E.villorum SB2 的 EPS 产量的最相关因素是蔗糖、酵母提取物和 pH 值,影响 E.rivorum S22-3 的 EPS 产量的最相关因素是蔗糖、酵母提取物和硫酸镁。经优化的发酵条件在 37 ℃ 培养 36 小时后,E.villorum SB-2 和 E.rivorum S22-3 的总 EPS 分别为 9.76 克/升(初始产量的 4 倍)和 7.74 克/升(初始产量的 2.5 倍)。这些优化研究可能有助于这些外多糖工业化生产的放大过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of exopolysaccharide production from the novel Enterococcus species, using statistical design of experiment.

The Exopolysaccharide (EPS) producing novel strains of Enterococcus previously isolated from the vaginal source of pregnant women were selected based on ropy structure formation. The two selected strains, E.villorum SB-2 and E.rivorum S22-3, were found to be producing 2.87 g/l and 3.14 g/l EPS, respectively, in the minimal media (M17 media) after 24-hour fermentation under anaerobic condition. Both the strains have probiotic properties and have the potential to be used for industrial applications. The production media and fermentation conditions were optimized to enhance the EPS production using the one-factor method, Placket-Burman factorial designing and Central composite design (CCD) of Response surface methodology (RSM). The most relevant factors affecting the EPS yield were sucrose, yeast extract and pH for E.villorum SB2 and sucrose, yeast extract and magnesium sulfate for the E.rivorum S22-3 as determined by Placket-Burman design, whose concentrations were further optimized using CCD. The optimized fermentation conditions gave the total EPS of 9.76 g/l (4 times the initial production) from E.villorum SB-2 and 7.74 g/l (2.5 times the initial production) from E.rivorum S22-3, respectively, after 36-hour incubation at 37 °C. These optimization studies might be helpful during scale-up process for the industrial scale production of these exopolysaccharide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Preparative Biochemistry & Biotechnology
Preparative Biochemistry & Biotechnology 工程技术-生化研究方法
CiteScore
4.90
自引率
3.40%
发文量
98
审稿时长
2 months
期刊介绍: Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信