Dongfeng Niu, Tong Li, Yuanyu Zhong, Longlong Liu, Baosheng Li
{"title":"基于粒度终值模式的全新世环境演变研究:萨拉乌苏河流域两个露头剖面的案例研究。","authors":"Dongfeng Niu, Tong Li, Yuanyu Zhong, Longlong Liu, Baosheng Li","doi":"10.1371/journal.pone.0305282","DOIUrl":null,"url":null,"abstract":"<p><p>Samples from two outcrop sections, MGS1 and DGS1 of Milanggouwan and Dishaogouwan in the Salawusu River Basin, were studied in terms of grain size using end-member model. Results show that: 1) MGS1 layer particles are more concentrated, better sorting, and smaller skewness and kurtosis values than those of DGS1. Whereas in the upper part of the DGS1 section, the grain size of the paleodune is coarser, with better sorting and sharper peak, comparing with the lower lacustrine sediments. 2) Three end-member components, EM1 (end-member 1), EM2 (end-member 2) and EM3 (end-member 3), which reflect sedimentary dynamic characteristics, are extracted by end-member analysis. The EM1 indicates the hydrodynamic force with great variation, EM2 indicates transporting force by flowing water and EM3 indicates the depositional environment closely related to the wind activity. 3) According to the accumulation processes of MGS1 and DGS1 strata, a total of four climate periods can be identified, namely early warming period, Holocene peak period, fluctuating transition to cold period and unstable cooling period. Moreover, EM1 of MGS1 and DGS1 is basically consistent with both the sea surface temperature (SST) in the western tropical Pacific and global temperature trends during the Holocene, suggesting that the environmental fluctuations recorded by MGS1 and DGS1 can be correlated with each other.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414904/pdf/","citationCount":"0","resultStr":"{\"title\":\"Study on Holocene environmental evolution based on grain size end-member model: A case study of two outcrop sections in Salawusu River Basin.\",\"authors\":\"Dongfeng Niu, Tong Li, Yuanyu Zhong, Longlong Liu, Baosheng Li\",\"doi\":\"10.1371/journal.pone.0305282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Samples from two outcrop sections, MGS1 and DGS1 of Milanggouwan and Dishaogouwan in the Salawusu River Basin, were studied in terms of grain size using end-member model. Results show that: 1) MGS1 layer particles are more concentrated, better sorting, and smaller skewness and kurtosis values than those of DGS1. Whereas in the upper part of the DGS1 section, the grain size of the paleodune is coarser, with better sorting and sharper peak, comparing with the lower lacustrine sediments. 2) Three end-member components, EM1 (end-member 1), EM2 (end-member 2) and EM3 (end-member 3), which reflect sedimentary dynamic characteristics, are extracted by end-member analysis. The EM1 indicates the hydrodynamic force with great variation, EM2 indicates transporting force by flowing water and EM3 indicates the depositional environment closely related to the wind activity. 3) According to the accumulation processes of MGS1 and DGS1 strata, a total of four climate periods can be identified, namely early warming period, Holocene peak period, fluctuating transition to cold period and unstable cooling period. Moreover, EM1 of MGS1 and DGS1 is basically consistent with both the sea surface temperature (SST) in the western tropical Pacific and global temperature trends during the Holocene, suggesting that the environmental fluctuations recorded by MGS1 and DGS1 can be correlated with each other.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414904/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0305282\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0305282","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Study on Holocene environmental evolution based on grain size end-member model: A case study of two outcrop sections in Salawusu River Basin.
Samples from two outcrop sections, MGS1 and DGS1 of Milanggouwan and Dishaogouwan in the Salawusu River Basin, were studied in terms of grain size using end-member model. Results show that: 1) MGS1 layer particles are more concentrated, better sorting, and smaller skewness and kurtosis values than those of DGS1. Whereas in the upper part of the DGS1 section, the grain size of the paleodune is coarser, with better sorting and sharper peak, comparing with the lower lacustrine sediments. 2) Three end-member components, EM1 (end-member 1), EM2 (end-member 2) and EM3 (end-member 3), which reflect sedimentary dynamic characteristics, are extracted by end-member analysis. The EM1 indicates the hydrodynamic force with great variation, EM2 indicates transporting force by flowing water and EM3 indicates the depositional environment closely related to the wind activity. 3) According to the accumulation processes of MGS1 and DGS1 strata, a total of four climate periods can be identified, namely early warming period, Holocene peak period, fluctuating transition to cold period and unstable cooling period. Moreover, EM1 of MGS1 and DGS1 is basically consistent with both the sea surface temperature (SST) in the western tropical Pacific and global temperature trends during the Holocene, suggesting that the environmental fluctuations recorded by MGS1 and DGS1 can be correlated with each other.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage