在高度受限环境中为康复轮椅机器人导航的机器狗。

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2024-09-20 eCollection Date: 2024-01-01 DOI:10.1371/journal.pone.0310024
Bibhya Sharma
{"title":"在高度受限环境中为康复轮椅机器人导航的机器狗。","authors":"Bibhya Sharma","doi":"10.1371/journal.pone.0310024","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptation to technological advancements and intelligent digital tools can enable healthcare providers to overcome the challenges of their patient-oriented care systems and processes. One such intelligent tool is automated assistive robots, which can improve patient care and safety in the health sector. This paper presents an invariant set of continuous nonlinear control laws for an assistive robot and a rehabilitation wheelchair robot modeled as a new autonomous robotic dog and rehabilitation wheelchair system for navigating a highly constrained environment. The control laws are derived from the Lyapunov-based control scheme classified under the umbrella of artificial potential field (APF) methods, and inherently proved stability of the new heterogeneous system. The robotic dog guides the wheelchair robot during the navigation process in a cluttered environment where the avoidances are from the robotic dog and the integrated dynamic protective polygon. The wheelchair traverses the obstacle-free path traced by the dynamic polygon. The leash is flexible, and its length is bounded, which invariably provides the protective polygon to change its intrinsic dimension. Thus, the dual-robot system has increased mobility for obstacle avoidance and passing through narrow passageways. The solution proffered herein is only feasible in a highly constrained and isolated human environment where nothing else appears to be moving in the direction of the robotic dog and wheelchair. The computer simulations and associated convergence graphs present the efficacy of the unique control laws for the new heterogeneous robotic system. Adoption of such control laws and their suitable variants can make a big impact in the healthcare industry.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414943/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robotic dog for navigation of a rehabilitation wheelchair robot in a highly constrained environment.\",\"authors\":\"Bibhya Sharma\",\"doi\":\"10.1371/journal.pone.0310024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adaptation to technological advancements and intelligent digital tools can enable healthcare providers to overcome the challenges of their patient-oriented care systems and processes. One such intelligent tool is automated assistive robots, which can improve patient care and safety in the health sector. This paper presents an invariant set of continuous nonlinear control laws for an assistive robot and a rehabilitation wheelchair robot modeled as a new autonomous robotic dog and rehabilitation wheelchair system for navigating a highly constrained environment. The control laws are derived from the Lyapunov-based control scheme classified under the umbrella of artificial potential field (APF) methods, and inherently proved stability of the new heterogeneous system. The robotic dog guides the wheelchair robot during the navigation process in a cluttered environment where the avoidances are from the robotic dog and the integrated dynamic protective polygon. The wheelchair traverses the obstacle-free path traced by the dynamic polygon. The leash is flexible, and its length is bounded, which invariably provides the protective polygon to change its intrinsic dimension. Thus, the dual-robot system has increased mobility for obstacle avoidance and passing through narrow passageways. The solution proffered herein is only feasible in a highly constrained and isolated human environment where nothing else appears to be moving in the direction of the robotic dog and wheelchair. The computer simulations and associated convergence graphs present the efficacy of the unique control laws for the new heterogeneous robotic system. Adoption of such control laws and their suitable variants can make a big impact in the healthcare industry.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414943/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0310024\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0310024","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

适应技术进步和智能数字工具可以使医疗服务提供者克服面向患者的护理系统和流程所面临的挑战。自动辅助机器人就是这样一种智能工具,它可以改善医疗行业的病人护理和安全。本文提出了一套针对辅助机器人和康复轮椅机器人的连续非线性控制法则的不变性,并将其建模为一个新的自主机器人狗和康复轮椅系统,用于在高度受限的环境中导航。这些控制法则来自基于 Lyapunov 的控制方案,属于人工势场(APF)方法的范畴,从本质上证明了新异构系统的稳定性。在杂乱的环境中,机器狗在导航过程中引导轮椅机器人避开机器狗和集成动态保护多边形。轮椅在动态多边形追踪的无障碍路径上行走。狗链是柔性的,其长度是有限制的,这无形中使保护多边形改变了其内在尺寸。这样,双机器人系统在避开障碍物和通过狭窄通道时就有了更大的机动性。本文提出的解决方案只有在高度受限和孤立的人类环境中才是可行的,在这种环境中,机器人狗和轮椅的移动方向似乎没有任何其他物体。计算机模拟和相关收敛图显示了新的异构机器人系统独特控制法则的功效。采用这种控制法则及其合适的变体可对医疗保健行业产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robotic dog for navigation of a rehabilitation wheelchair robot in a highly constrained environment.

Adaptation to technological advancements and intelligent digital tools can enable healthcare providers to overcome the challenges of their patient-oriented care systems and processes. One such intelligent tool is automated assistive robots, which can improve patient care and safety in the health sector. This paper presents an invariant set of continuous nonlinear control laws for an assistive robot and a rehabilitation wheelchair robot modeled as a new autonomous robotic dog and rehabilitation wheelchair system for navigating a highly constrained environment. The control laws are derived from the Lyapunov-based control scheme classified under the umbrella of artificial potential field (APF) methods, and inherently proved stability of the new heterogeneous system. The robotic dog guides the wheelchair robot during the navigation process in a cluttered environment where the avoidances are from the robotic dog and the integrated dynamic protective polygon. The wheelchair traverses the obstacle-free path traced by the dynamic polygon. The leash is flexible, and its length is bounded, which invariably provides the protective polygon to change its intrinsic dimension. Thus, the dual-robot system has increased mobility for obstacle avoidance and passing through narrow passageways. The solution proffered herein is only feasible in a highly constrained and isolated human environment where nothing else appears to be moving in the direction of the robotic dog and wheelchair. The computer simulations and associated convergence graphs present the efficacy of the unique control laws for the new heterogeneous robotic system. Adoption of such control laws and their suitable variants can make a big impact in the healthcare industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信