Samiran Ghosh, Malay Banerjee, Amit K Chattopadhyay
{"title":"疫苗剂量间隔的影响:在制定疾病控制策略时考虑免疫水平、疫苗效力和菌株变异。","authors":"Samiran Ghosh, Malay Banerjee, Amit K Chattopadhyay","doi":"10.1371/journal.pone.0310152","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we present an immuno-epidemic model to understand mitigation options during an epidemic break. The model incorporates comorbidity and multiple-vaccine doses through a system of coupled integro-differential equations to analyze the epidemic rate and intensity from a knowledge of the basic reproduction number and time-distributed rate functions. Our modeling results show that the interval between vaccine doses is a key control parameter that can be tuned to significantly influence disease spread. We show that multiple doses induce a hysteresis effect in immunity levels that offers a better mitigation alternative compared to frequent vaccination which is less cost-effective while being more intrusive. Optimal dosing intervals, emphasizing the cost-effectiveness of each vaccination effort, and determined by various factors such as the level of immunity and efficacy of vaccines against different strains, appear to be crucial in disease management. The model is sufficiently generic that can be extended to accommodate specific disease forms.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412640/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of vaccine dose intervals: Considering immunity levels, vaccine efficacy, and strain variants for disease control strategy.\",\"authors\":\"Samiran Ghosh, Malay Banerjee, Amit K Chattopadhyay\",\"doi\":\"10.1371/journal.pone.0310152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we present an immuno-epidemic model to understand mitigation options during an epidemic break. The model incorporates comorbidity and multiple-vaccine doses through a system of coupled integro-differential equations to analyze the epidemic rate and intensity from a knowledge of the basic reproduction number and time-distributed rate functions. Our modeling results show that the interval between vaccine doses is a key control parameter that can be tuned to significantly influence disease spread. We show that multiple doses induce a hysteresis effect in immunity levels that offers a better mitigation alternative compared to frequent vaccination which is less cost-effective while being more intrusive. Optimal dosing intervals, emphasizing the cost-effectiveness of each vaccination effort, and determined by various factors such as the level of immunity and efficacy of vaccines against different strains, appear to be crucial in disease management. The model is sufficiently generic that can be extended to accommodate specific disease forms.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412640/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0310152\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0310152","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Effect of vaccine dose intervals: Considering immunity levels, vaccine efficacy, and strain variants for disease control strategy.
In this study, we present an immuno-epidemic model to understand mitigation options during an epidemic break. The model incorporates comorbidity and multiple-vaccine doses through a system of coupled integro-differential equations to analyze the epidemic rate and intensity from a knowledge of the basic reproduction number and time-distributed rate functions. Our modeling results show that the interval between vaccine doses is a key control parameter that can be tuned to significantly influence disease spread. We show that multiple doses induce a hysteresis effect in immunity levels that offers a better mitigation alternative compared to frequent vaccination which is less cost-effective while being more intrusive. Optimal dosing intervals, emphasizing the cost-effectiveness of each vaccination effort, and determined by various factors such as the level of immunity and efficacy of vaccines against different strains, appear to be crucial in disease management. The model is sufficiently generic that can be extended to accommodate specific disease forms.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage