Zili Tang , Siyi Sun , Zhonglan Lin , Yuxin Wen , Shuxin Li , Jiahong Shen , Jianliang Sun
{"title":"使用雷马唑仑进行新生儿麻醉会减少突触蛋白的表达,并增加成年小鼠的抑郁行为。","authors":"Zili Tang , Siyi Sun , Zhonglan Lin , Yuxin Wen , Shuxin Li , Jiahong Shen , Jianliang Sun","doi":"10.1016/j.neulet.2024.137971","DOIUrl":null,"url":null,"abstract":"<div><div>The demand for pediatric anesthesia has risen in decades, raising concerns about the neurotoxic potential of anesthetics like remimazolam, which may impact neurodevelopment and later cognitive function. This study utilized a neonatal mouse model to assess remimazolam’s neurodevelopmental effects. Results indicate that remimazolam-exposed mice displayed cognitive impairment and depressive behaviors in adulthood. Acute reductions in synaptic protein expression post-anesthesia were observed, along with long-term decreases in hippocampal choline acetyltransferase levels, reduced dendritic spine density in the CA1 region, and microglial proliferation. Collectively, these findings suggest that remimazolam can induce neurotoxicity and neuroinflammation, leading to synaptic dysfunction and associated cognitive and behavioral deficits.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"842 ","pages":"Article 137971"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neonatal anesthesia with remimazolam Reduces the expression of synaptic proteins and increases depressive behavior in adult mice\",\"authors\":\"Zili Tang , Siyi Sun , Zhonglan Lin , Yuxin Wen , Shuxin Li , Jiahong Shen , Jianliang Sun\",\"doi\":\"10.1016/j.neulet.2024.137971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The demand for pediatric anesthesia has risen in decades, raising concerns about the neurotoxic potential of anesthetics like remimazolam, which may impact neurodevelopment and later cognitive function. This study utilized a neonatal mouse model to assess remimazolam’s neurodevelopmental effects. Results indicate that remimazolam-exposed mice displayed cognitive impairment and depressive behaviors in adulthood. Acute reductions in synaptic protein expression post-anesthesia were observed, along with long-term decreases in hippocampal choline acetyltransferase levels, reduced dendritic spine density in the CA1 region, and microglial proliferation. Collectively, these findings suggest that remimazolam can induce neurotoxicity and neuroinflammation, leading to synaptic dysfunction and associated cognitive and behavioral deficits.</div></div>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":\"842 \",\"pages\":\"Article 137971\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304394024003495\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394024003495","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Neonatal anesthesia with remimazolam Reduces the expression of synaptic proteins and increases depressive behavior in adult mice
The demand for pediatric anesthesia has risen in decades, raising concerns about the neurotoxic potential of anesthetics like remimazolam, which may impact neurodevelopment and later cognitive function. This study utilized a neonatal mouse model to assess remimazolam’s neurodevelopmental effects. Results indicate that remimazolam-exposed mice displayed cognitive impairment and depressive behaviors in adulthood. Acute reductions in synaptic protein expression post-anesthesia were observed, along with long-term decreases in hippocampal choline acetyltransferase levels, reduced dendritic spine density in the CA1 region, and microglial proliferation. Collectively, these findings suggest that remimazolam can induce neurotoxicity and neuroinflammation, leading to synaptic dysfunction and associated cognitive and behavioral deficits.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.