Piezo1 在单一残基(丝氨酸-1612)上的磷酸化可调节其机械敏感性和体内机械传导功能。

IF 14.7 1区 医学 Q1 NEUROSCIENCES
Neuron Pub Date : 2024-11-06 Epub Date: 2024-09-12 DOI:10.1016/j.neuron.2024.08.009
Tingxin Zhang, Cheng Bi, Yiran Li, Lingyun Zhao, Yaxiong Cui, Kunfu Ouyang, Bailong Xiao
{"title":"Piezo1 在单一残基(丝氨酸-1612)上的磷酸化可调节其机械敏感性和体内机械传导功能。","authors":"Tingxin Zhang, Cheng Bi, Yiran Li, Lingyun Zhao, Yaxiong Cui, Kunfu Ouyang, Bailong Xiao","doi":"10.1016/j.neuron.2024.08.009","DOIUrl":null,"url":null,"abstract":"<p><p>Piezo1 is a mechanically activated cation channel that converts mechanical force into diverse physiological processes. Owing to its large protein size of more than 2,500 amino acids and complex 38-transmembrane helix topology, how Piezo1 is post-translationally modified for regulating its in vivo mechanotransduction functions remains largely unexplored. Here, we show that PKA activation potentiates the mechanosensitivity and slows the inactivation kinetics of mouse Piezo1 and identify the major phosphorylation site, serine-1612 (S1612), that also responds to PKC activation and shear stress. Mutating S1612 abolishes PKA and PKC regulation of Piezo1 activities. Primary endothelial cells derived from the Piezo1-S1612A knockin mice lost PKA- and PKC-dependent phosphorylation and functional potentiation of Piezo1. The mutant mice show activity-dependent elevation of blood pressure and compromised exercise endurance, resembling endothelial-specific Piezo1 knockout mice. Taken together, we identify the major PKA and PKC phosphorylation site in Piezo1 and demonstrate its contribution to Piezo1-mediated physiological functions.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3618-3633.e6"},"PeriodicalIF":14.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphorylation of Piezo1 at a single residue, serine-1612, regulates its mechanosensitivity and in vivo mechanotransduction function.\",\"authors\":\"Tingxin Zhang, Cheng Bi, Yiran Li, Lingyun Zhao, Yaxiong Cui, Kunfu Ouyang, Bailong Xiao\",\"doi\":\"10.1016/j.neuron.2024.08.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Piezo1 is a mechanically activated cation channel that converts mechanical force into diverse physiological processes. Owing to its large protein size of more than 2,500 amino acids and complex 38-transmembrane helix topology, how Piezo1 is post-translationally modified for regulating its in vivo mechanotransduction functions remains largely unexplored. Here, we show that PKA activation potentiates the mechanosensitivity and slows the inactivation kinetics of mouse Piezo1 and identify the major phosphorylation site, serine-1612 (S1612), that also responds to PKC activation and shear stress. Mutating S1612 abolishes PKA and PKC regulation of Piezo1 activities. Primary endothelial cells derived from the Piezo1-S1612A knockin mice lost PKA- and PKC-dependent phosphorylation and functional potentiation of Piezo1. The mutant mice show activity-dependent elevation of blood pressure and compromised exercise endurance, resembling endothelial-specific Piezo1 knockout mice. Taken together, we identify the major PKA and PKC phosphorylation site in Piezo1 and demonstrate its contribution to Piezo1-mediated physiological functions.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"3618-3633.e6\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2024.08.009\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.08.009","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

Piezo1 是一种机械激活的阳离子通道,可将机械力转化为各种生理过程。由于 Piezo1 的蛋白质大小超过 2,500 个氨基酸,且具有复杂的 38 跨膜螺旋拓扑结构,因此如何通过翻译后修饰来调节其体内机械传导功能在很大程度上仍未得到研究。在这里,我们发现 PKA 激活会增强小鼠 Piezo1 的机械敏感性并减慢其失活动力学,并确定了主要的磷酸化位点丝氨酸-1612(S1612),该位点也会对 PKC 激活和剪切应力产生反应。突变 S1612 会取消 PKA 和 PKC 对 Piezo1 活性的调控。来自 Piezo1-S1612A 基因敲除小鼠的原代内皮细胞失去了 PKA 和 PKC 依赖性磷酸化和 Piezo1 的功能增效作用。突变小鼠表现出活动依赖性血压升高和运动耐力受损,类似于内皮特异性 Piezo1 基因敲除小鼠。综上所述,我们确定了 Piezo1 中主要的 PKA 和 PKC 磷酸化位点,并证明了其对 Piezo1 介导的生理功能的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phosphorylation of Piezo1 at a single residue, serine-1612, regulates its mechanosensitivity and in vivo mechanotransduction function.

Piezo1 is a mechanically activated cation channel that converts mechanical force into diverse physiological processes. Owing to its large protein size of more than 2,500 amino acids and complex 38-transmembrane helix topology, how Piezo1 is post-translationally modified for regulating its in vivo mechanotransduction functions remains largely unexplored. Here, we show that PKA activation potentiates the mechanosensitivity and slows the inactivation kinetics of mouse Piezo1 and identify the major phosphorylation site, serine-1612 (S1612), that also responds to PKC activation and shear stress. Mutating S1612 abolishes PKA and PKC regulation of Piezo1 activities. Primary endothelial cells derived from the Piezo1-S1612A knockin mice lost PKA- and PKC-dependent phosphorylation and functional potentiation of Piezo1. The mutant mice show activity-dependent elevation of blood pressure and compromised exercise endurance, resembling endothelial-specific Piezo1 knockout mice. Taken together, we identify the major PKA and PKC phosphorylation site in Piezo1 and demonstrate its contribution to Piezo1-mediated physiological functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信