Miho Ota , Hiroyuki Maki , Yuji Takahashi , Yoko Shigemoto , Yukio Kimura , Hiroshi Matsuda , Noriko Sato
{"title":"路易体痴呆症患者的神经影像生物标志物与淋巴系统活动之间的关系。","authors":"Miho Ota , Hiroyuki Maki , Yuji Takahashi , Yoko Shigemoto , Yukio Kimura , Hiroshi Matsuda , Noriko Sato","doi":"10.1016/j.neulet.2024.137995","DOIUrl":null,"url":null,"abstract":"<div><div>Alpha-synuclein deposits in the brain have been suspected to cause Parkinson’s disease and dementia with Lewy bodies (DLB). It was recently revealed that the glymphatic system is largely responsible for the removal of alpha-synuclein. We investigated changes in the glymphatic system’s activity by determining the DTI‑ALPS (diffusion tensor image analysis along the perivascular space) index in DLB patients. Twenty-six patients with DLB and 43 healthy subjects underwent diffusion tensor imaging (DTI) scanning at our hospital during the period April 2013 to March 2023. We retrospectively computed each subject’s DTI‑ALPS index to evaluate his/her glymphatic-system activity and then analyzed the relationships between the subjects’ DTI‑ALPS index data and their DLB neuroimaging biomarker values. A significant reduction of the DTI‑ALPS index was observed in the patients with DLB compared to the healthy subjects. Significant positive correlations were also detected in the DLB group between the DTI‑ALPS index and the regional gray matter volume in the left insula and between the index and the specific binding ratio of <sup>123</sup>I–N-ω-fluoropropyl-2β-carboxymethoxy-3β-(4-iodophenyl)nortropane ([<sup>123</sup>I]-FP-CIT). These results indicate that (<em>i</em>) the DTI‑ALPS index is a good biomarker of the progression of DLB, and (<em>ii</em>) this index might be effective to distinguish DLB from other neurocognitive disorders.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"842 ","pages":"Article 137995"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationships between neuroimaging biomarkers and glymphatic-system activity in dementia with Lewy bodies\",\"authors\":\"Miho Ota , Hiroyuki Maki , Yuji Takahashi , Yoko Shigemoto , Yukio Kimura , Hiroshi Matsuda , Noriko Sato\",\"doi\":\"10.1016/j.neulet.2024.137995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alpha-synuclein deposits in the brain have been suspected to cause Parkinson’s disease and dementia with Lewy bodies (DLB). It was recently revealed that the glymphatic system is largely responsible for the removal of alpha-synuclein. We investigated changes in the glymphatic system’s activity by determining the DTI‑ALPS (diffusion tensor image analysis along the perivascular space) index in DLB patients. Twenty-six patients with DLB and 43 healthy subjects underwent diffusion tensor imaging (DTI) scanning at our hospital during the period April 2013 to March 2023. We retrospectively computed each subject’s DTI‑ALPS index to evaluate his/her glymphatic-system activity and then analyzed the relationships between the subjects’ DTI‑ALPS index data and their DLB neuroimaging biomarker values. A significant reduction of the DTI‑ALPS index was observed in the patients with DLB compared to the healthy subjects. Significant positive correlations were also detected in the DLB group between the DTI‑ALPS index and the regional gray matter volume in the left insula and between the index and the specific binding ratio of <sup>123</sup>I–N-ω-fluoropropyl-2β-carboxymethoxy-3β-(4-iodophenyl)nortropane ([<sup>123</sup>I]-FP-CIT). These results indicate that (<em>i</em>) the DTI‑ALPS index is a good biomarker of the progression of DLB, and (<em>ii</em>) this index might be effective to distinguish DLB from other neurocognitive disorders.</div></div>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":\"842 \",\"pages\":\"Article 137995\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304394024003732\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394024003732","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Relationships between neuroimaging biomarkers and glymphatic-system activity in dementia with Lewy bodies
Alpha-synuclein deposits in the brain have been suspected to cause Parkinson’s disease and dementia with Lewy bodies (DLB). It was recently revealed that the glymphatic system is largely responsible for the removal of alpha-synuclein. We investigated changes in the glymphatic system’s activity by determining the DTI‑ALPS (diffusion tensor image analysis along the perivascular space) index in DLB patients. Twenty-six patients with DLB and 43 healthy subjects underwent diffusion tensor imaging (DTI) scanning at our hospital during the period April 2013 to March 2023. We retrospectively computed each subject’s DTI‑ALPS index to evaluate his/her glymphatic-system activity and then analyzed the relationships between the subjects’ DTI‑ALPS index data and their DLB neuroimaging biomarker values. A significant reduction of the DTI‑ALPS index was observed in the patients with DLB compared to the healthy subjects. Significant positive correlations were also detected in the DLB group between the DTI‑ALPS index and the regional gray matter volume in the left insula and between the index and the specific binding ratio of 123I–N-ω-fluoropropyl-2β-carboxymethoxy-3β-(4-iodophenyl)nortropane ([123I]-FP-CIT). These results indicate that (i) the DTI‑ALPS index is a good biomarker of the progression of DLB, and (ii) this index might be effective to distinguish DLB from other neurocognitive disorders.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.