Xiaofeng Wu, Xiaojun Shen, Qinghe Li, Peiyuan Wang
{"title":"重度抑郁障碍中区域同质性的时间动态变化:一项结合机器学习的研究。","authors":"Xiaofeng Wu, Xiaojun Shen, Qinghe Li, Peiyuan Wang","doi":"10.1097/WNR.0000000000002086","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have found alterations in the local regional homogeneity of brain activity in individuals diagnosed with major depressive disorder. However, many studies have failed to consider that even during resting states, brain activity is dynamic and time-varying. The lack of investigation into the dynamic regional homogeneity has hindered the discovery of biomarkers for depression. This study aimed to assess the utility of the dynamic regional homogeneity by a machine learning model (support vector machine). Sixty-five individuals with dynamic regional homogeneity and 57 healthy controls participated in resting-state functional magnetic resonance rescanning and scale estimating. The dynamic regional homogeneity and receiver operating characteristic curve methods were used for analysis of the imaging data. Relative to healthy controls, major depressive disorder patients displayed increased dynamic regional homogeneity values in the left precuneus and right postcentral gyrus. Additionally, receiver operating characteristic curve results of the dynamic regional homogeneity values in the left precuneus and right postcentral gyrus could distinguish major depressive disorder patients from healthy controls; furthermore, changes in the dynamic regional homogeneity were correlated with depression severity.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":"35 15","pages":"972-979"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal dynamic alterations of regional homogeneity in major depressive disorder: a study integrating machine learning.\",\"authors\":\"Xiaofeng Wu, Xiaojun Shen, Qinghe Li, Peiyuan Wang\",\"doi\":\"10.1097/WNR.0000000000002086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous studies have found alterations in the local regional homogeneity of brain activity in individuals diagnosed with major depressive disorder. However, many studies have failed to consider that even during resting states, brain activity is dynamic and time-varying. The lack of investigation into the dynamic regional homogeneity has hindered the discovery of biomarkers for depression. This study aimed to assess the utility of the dynamic regional homogeneity by a machine learning model (support vector machine). Sixty-five individuals with dynamic regional homogeneity and 57 healthy controls participated in resting-state functional magnetic resonance rescanning and scale estimating. The dynamic regional homogeneity and receiver operating characteristic curve methods were used for analysis of the imaging data. Relative to healthy controls, major depressive disorder patients displayed increased dynamic regional homogeneity values in the left precuneus and right postcentral gyrus. Additionally, receiver operating characteristic curve results of the dynamic regional homogeneity values in the left precuneus and right postcentral gyrus could distinguish major depressive disorder patients from healthy controls; furthermore, changes in the dynamic regional homogeneity were correlated with depression severity.</p>\",\"PeriodicalId\":19213,\"journal\":{\"name\":\"Neuroreport\",\"volume\":\"35 15\",\"pages\":\"972-979\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroreport\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/WNR.0000000000002086\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002086","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Temporal dynamic alterations of regional homogeneity in major depressive disorder: a study integrating machine learning.
Previous studies have found alterations in the local regional homogeneity of brain activity in individuals diagnosed with major depressive disorder. However, many studies have failed to consider that even during resting states, brain activity is dynamic and time-varying. The lack of investigation into the dynamic regional homogeneity has hindered the discovery of biomarkers for depression. This study aimed to assess the utility of the dynamic regional homogeneity by a machine learning model (support vector machine). Sixty-five individuals with dynamic regional homogeneity and 57 healthy controls participated in resting-state functional magnetic resonance rescanning and scale estimating. The dynamic regional homogeneity and receiver operating characteristic curve methods were used for analysis of the imaging data. Relative to healthy controls, major depressive disorder patients displayed increased dynamic regional homogeneity values in the left precuneus and right postcentral gyrus. Additionally, receiver operating characteristic curve results of the dynamic regional homogeneity values in the left precuneus and right postcentral gyrus could distinguish major depressive disorder patients from healthy controls; furthermore, changes in the dynamic regional homogeneity were correlated with depression severity.
期刊介绍:
NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works.
We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.