对非靶向代谢组学数据中基于特征的分子网络结果进行统计分析。

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Abzer K Pakkir Shah, Axel Walter, Filip Ottosson, Francesco Russo, Marcelo Navarro-Diaz, Judith Boldt, Jarmo-Charles J Kalinski, Eftychia Eva Kontou, James Elofson, Alexandros Polyzois, Carolina González-Marín, Shane Farrell, Marie R Aggerbeck, Thapanee Pruksatrakul, Nathan Chan, Yunshu Wang, Magdalena Pöchhacker, Corinna Brungs, Beatriz Cámara, Andrés Mauricio Caraballo-Rodríguez, Andres Cumsille, Fernanda de Oliveira, Kai Dührkop, Yasin El Abiead, Christian Geibel, Lana G Graves, Martin Hansen, Steffen Heuckeroth, Simon Knoblauch, Anastasiia Kostenko, Mirte C M Kuijpers, Kevin Mildau, Stilianos Papadopoulos Lambidis, Paulo Wender Portal Gomes, Tilman Schramm, Karoline Steuer-Lodd, Paolo Stincone, Sibgha Tayyab, Giovanni Andrea Vitale, Berenike C Wagner, Shipei Xing, Marquis T Yazzie, Simone Zuffa, Martinus de Kruijff, Christine Beemelmanns, Hannes Link, Christoph Mayer, Justin J J van der Hooft, Tito Damiani, Tomáš Pluskal, Pieter Dorrestein, Jan Stanstrup, Robin Schmid, Mingxun Wang, Allegra Aron, Madeleine Ernst, Daniel Petras
{"title":"对非靶向代谢组学数据中基于特征的分子网络结果进行统计分析。","authors":"Abzer K Pakkir Shah, Axel Walter, Filip Ottosson, Francesco Russo, Marcelo Navarro-Diaz, Judith Boldt, Jarmo-Charles J Kalinski, Eftychia Eva Kontou, James Elofson, Alexandros Polyzois, Carolina González-Marín, Shane Farrell, Marie R Aggerbeck, Thapanee Pruksatrakul, Nathan Chan, Yunshu Wang, Magdalena Pöchhacker, Corinna Brungs, Beatriz Cámara, Andrés Mauricio Caraballo-Rodríguez, Andres Cumsille, Fernanda de Oliveira, Kai Dührkop, Yasin El Abiead, Christian Geibel, Lana G Graves, Martin Hansen, Steffen Heuckeroth, Simon Knoblauch, Anastasiia Kostenko, Mirte C M Kuijpers, Kevin Mildau, Stilianos Papadopoulos Lambidis, Paulo Wender Portal Gomes, Tilman Schramm, Karoline Steuer-Lodd, Paolo Stincone, Sibgha Tayyab, Giovanni Andrea Vitale, Berenike C Wagner, Shipei Xing, Marquis T Yazzie, Simone Zuffa, Martinus de Kruijff, Christine Beemelmanns, Hannes Link, Christoph Mayer, Justin J J van der Hooft, Tito Damiani, Tomáš Pluskal, Pieter Dorrestein, Jan Stanstrup, Robin Schmid, Mingxun Wang, Allegra Aron, Madeleine Ernst, Daniel Petras","doi":"10.1038/s41596-024-01046-3","DOIUrl":null,"url":null,"abstract":"<p><p>Feature-based molecular networking (FBMN) is a popular analysis approach for liquid chromatography-tandem mass spectrometry-based non-targeted metabolomics data. While processing liquid chromatography-tandem mass spectrometry data through FBMN is fairly streamlined, downstream data handling and statistical interrogation are often a key bottleneck. Especially users new to statistical analysis struggle to effectively handle and analyze complex data matrices. Here we provide a comprehensive guide for the statistical analysis of FBMN results, focusing on the downstream analysis of the FBMN output table. We explain the data structure and principles of data cleanup and normalization, as well as uni- and multivariate statistical analysis of FBMN results. We provide explanations and code in two scripting languages (R and Python) as well as the QIIME2 framework for all protocol steps, from data clean-up to statistical analysis. All code is shared in the form of Jupyter Notebooks ( https://github.com/Functional-Metabolomics-Lab/FBMN-STATS ). Additionally, the protocol is accompanied by a web application with a graphical user interface ( https://fbmn-statsguide.gnps2.org/ ) to lower the barrier of entry for new users and for educational purposes. Finally, we also show users how to integrate their statistical results into the molecular network using the Cytoscape visualization tool. Throughout the protocol, we use a previously published environmental metabolomics dataset for demonstration purposes. Together, the protocol, code and web application provide a complete guide and toolbox for FBMN data integration, cleanup and advanced statistical analysis, enabling new users to uncover molecular insights from their non-targeted metabolomics data. Our protocol is tailored for the seamless analysis of FBMN results from Global Natural Products Social Molecular Networking and can be easily adapted to other mass spectrometry feature detection, annotation and networking tools.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data.\",\"authors\":\"Abzer K Pakkir Shah, Axel Walter, Filip Ottosson, Francesco Russo, Marcelo Navarro-Diaz, Judith Boldt, Jarmo-Charles J Kalinski, Eftychia Eva Kontou, James Elofson, Alexandros Polyzois, Carolina González-Marín, Shane Farrell, Marie R Aggerbeck, Thapanee Pruksatrakul, Nathan Chan, Yunshu Wang, Magdalena Pöchhacker, Corinna Brungs, Beatriz Cámara, Andrés Mauricio Caraballo-Rodríguez, Andres Cumsille, Fernanda de Oliveira, Kai Dührkop, Yasin El Abiead, Christian Geibel, Lana G Graves, Martin Hansen, Steffen Heuckeroth, Simon Knoblauch, Anastasiia Kostenko, Mirte C M Kuijpers, Kevin Mildau, Stilianos Papadopoulos Lambidis, Paulo Wender Portal Gomes, Tilman Schramm, Karoline Steuer-Lodd, Paolo Stincone, Sibgha Tayyab, Giovanni Andrea Vitale, Berenike C Wagner, Shipei Xing, Marquis T Yazzie, Simone Zuffa, Martinus de Kruijff, Christine Beemelmanns, Hannes Link, Christoph Mayer, Justin J J van der Hooft, Tito Damiani, Tomáš Pluskal, Pieter Dorrestein, Jan Stanstrup, Robin Schmid, Mingxun Wang, Allegra Aron, Madeleine Ernst, Daniel Petras\",\"doi\":\"10.1038/s41596-024-01046-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Feature-based molecular networking (FBMN) is a popular analysis approach for liquid chromatography-tandem mass spectrometry-based non-targeted metabolomics data. While processing liquid chromatography-tandem mass spectrometry data through FBMN is fairly streamlined, downstream data handling and statistical interrogation are often a key bottleneck. Especially users new to statistical analysis struggle to effectively handle and analyze complex data matrices. Here we provide a comprehensive guide for the statistical analysis of FBMN results, focusing on the downstream analysis of the FBMN output table. We explain the data structure and principles of data cleanup and normalization, as well as uni- and multivariate statistical analysis of FBMN results. We provide explanations and code in two scripting languages (R and Python) as well as the QIIME2 framework for all protocol steps, from data clean-up to statistical analysis. All code is shared in the form of Jupyter Notebooks ( https://github.com/Functional-Metabolomics-Lab/FBMN-STATS ). Additionally, the protocol is accompanied by a web application with a graphical user interface ( https://fbmn-statsguide.gnps2.org/ ) to lower the barrier of entry for new users and for educational purposes. Finally, we also show users how to integrate their statistical results into the molecular network using the Cytoscape visualization tool. Throughout the protocol, we use a previously published environmental metabolomics dataset for demonstration purposes. Together, the protocol, code and web application provide a complete guide and toolbox for FBMN data integration, cleanup and advanced statistical analysis, enabling new users to uncover molecular insights from their non-targeted metabolomics data. Our protocol is tailored for the seamless analysis of FBMN results from Global Natural Products Social Molecular Networking and can be easily adapted to other mass spectrometry feature detection, annotation and networking tools.</p>\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41596-024-01046-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01046-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

基于特征的分子网络(FBMN)是一种流行的分析方法,适用于基于液相色谱-串联质谱的非靶向代谢组学数据。虽然通过 FBMN 处理液相色谱-串联质谱数据相当简便,但下游数据处理和统计查询往往是一个关键瓶颈。尤其是统计分析新手,很难有效处理和分析复杂的数据矩阵。在此,我们提供一份全面的 FBMN 结果统计分析指南,重点介绍 FBMN 输出表的下游分析。我们解释了数据结构、数据清理和归一化原则,以及 FBMN 结果的单变量和多变量统计分析。我们用两种脚本语言(R 和 Python)以及 QIIME2 框架为从数据清理到统计分析的所有协议步骤提供解释和代码。所有代码都以 Jupyter Notebooks ( https://github.com/Functional-Metabolomics-Lab/FBMN-STATS ) 的形式共享。此外,该协议还附有一个图形用户界面的网络应用程序 ( https://fbmn-statsguide.gnps2.org/ ),以降低新用户的入门门槛并用于教育目的。最后,我们还向用户展示了如何使用 Cytoscape 可视化工具将统计结果整合到分子网络中。在整个协议中,我们使用了之前发布的环境代谢组学数据集进行演示。协议、代码和网络应用程序共同为 FBMN 数据整合、清理和高级统计分析提供了完整的指南和工具箱,使新用户能够从他们的非靶向代谢组学数据中发现分子洞察力。我们的协议专为无缝分析来自全球天然产品社会分子网络的 FBMN 结果而定制,可轻松适用于其他质谱特征检测、注释和网络工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data.

Feature-based molecular networking (FBMN) is a popular analysis approach for liquid chromatography-tandem mass spectrometry-based non-targeted metabolomics data. While processing liquid chromatography-tandem mass spectrometry data through FBMN is fairly streamlined, downstream data handling and statistical interrogation are often a key bottleneck. Especially users new to statistical analysis struggle to effectively handle and analyze complex data matrices. Here we provide a comprehensive guide for the statistical analysis of FBMN results, focusing on the downstream analysis of the FBMN output table. We explain the data structure and principles of data cleanup and normalization, as well as uni- and multivariate statistical analysis of FBMN results. We provide explanations and code in two scripting languages (R and Python) as well as the QIIME2 framework for all protocol steps, from data clean-up to statistical analysis. All code is shared in the form of Jupyter Notebooks ( https://github.com/Functional-Metabolomics-Lab/FBMN-STATS ). Additionally, the protocol is accompanied by a web application with a graphical user interface ( https://fbmn-statsguide.gnps2.org/ ) to lower the barrier of entry for new users and for educational purposes. Finally, we also show users how to integrate their statistical results into the molecular network using the Cytoscape visualization tool. Throughout the protocol, we use a previously published environmental metabolomics dataset for demonstration purposes. Together, the protocol, code and web application provide a complete guide and toolbox for FBMN data integration, cleanup and advanced statistical analysis, enabling new users to uncover molecular insights from their non-targeted metabolomics data. Our protocol is tailored for the seamless analysis of FBMN results from Global Natural Products Social Molecular Networking and can be easily adapted to other mass spectrometry feature detection, annotation and networking tools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信