{"title":"银杏酸通过影响 C2C12 成肌细胞的增殖和分化来调节成肌细胞的发育。","authors":"Hyunju Liu, Hosouk Joung","doi":"10.3892/mmr.2024.13328","DOIUrl":null,"url":null,"abstract":"<p><p>Ginkgolic acid (GA), isolated from the leaves and seed coats of <i>Ginkgo biloba</i>, exerts several biological effects, including antitumor, antibacterial, anti‑HIV and anti‑inflammatory effects. However, the effects of GA on C2C12 myoblasts remain unclear. The present study assessed cell viability with the MTT assay and evaluated colony formation through crystal violet staining. Flow cytometry was used to analyze apoptosis with Annexin V/7‑AAD staining, proliferation with Ki67 staining and cell cycle arrest. Western blotting detected myogenic markers and other relevant proteins. Myotube formation was examined by immunofluorescence, and autophagy was measured using an LC3 antibody‑based kit via flow cytometry. The present study showed that treatment of C2C12 cells with GA significantly inhibited their viability and colony formation capacity but did not trigger apoptosis, as indicated by Annexin V/7‑AAD staining. However, Ki67 staining indicates that GA exerted dose‑dependent antiproliferative effects. Further analysis revealed that GA partially inhibited the growth of C2C12 cells via cell cycle arrest in S phase, highlighting its role in the disruption of cell proliferation. Furthermore, treatment with GA impaired myoblast differentiation, as evidenced by a reduction in the expression of the myogenesis markers, the myosin‑heavy chain, myoblast determination protein 1 and myogenin, and suppressed myotube formation. Notably, during C2C12 cell differentiation, GA promoted apoptosis without affecting cell cycle progression or Ki67 expression. Mechanistically, GA could suppress nuclear extracellular signal‑regulated kinase phosphorylation, suggesting that it modulates cell proliferation pathways. Moreover, GA triggered autophagy in differentiated C2C12 cells, as confirmed by elevated LC3 II levels. These findings highlight the multifaceted effects of GA on C2C12 cells.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413845/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ginkgolic acid regulates myogenic development by influencing the proliferation and differentiation of C2C12 myoblast cells.\",\"authors\":\"Hyunju Liu, Hosouk Joung\",\"doi\":\"10.3892/mmr.2024.13328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ginkgolic acid (GA), isolated from the leaves and seed coats of <i>Ginkgo biloba</i>, exerts several biological effects, including antitumor, antibacterial, anti‑HIV and anti‑inflammatory effects. However, the effects of GA on C2C12 myoblasts remain unclear. The present study assessed cell viability with the MTT assay and evaluated colony formation through crystal violet staining. Flow cytometry was used to analyze apoptosis with Annexin V/7‑AAD staining, proliferation with Ki67 staining and cell cycle arrest. Western blotting detected myogenic markers and other relevant proteins. Myotube formation was examined by immunofluorescence, and autophagy was measured using an LC3 antibody‑based kit via flow cytometry. The present study showed that treatment of C2C12 cells with GA significantly inhibited their viability and colony formation capacity but did not trigger apoptosis, as indicated by Annexin V/7‑AAD staining. However, Ki67 staining indicates that GA exerted dose‑dependent antiproliferative effects. Further analysis revealed that GA partially inhibited the growth of C2C12 cells via cell cycle arrest in S phase, highlighting its role in the disruption of cell proliferation. Furthermore, treatment with GA impaired myoblast differentiation, as evidenced by a reduction in the expression of the myogenesis markers, the myosin‑heavy chain, myoblast determination protein 1 and myogenin, and suppressed myotube formation. Notably, during C2C12 cell differentiation, GA promoted apoptosis without affecting cell cycle progression or Ki67 expression. Mechanistically, GA could suppress nuclear extracellular signal‑regulated kinase phosphorylation, suggesting that it modulates cell proliferation pathways. Moreover, GA triggered autophagy in differentiated C2C12 cells, as confirmed by elevated LC3 II levels. These findings highlight the multifaceted effects of GA on C2C12 cells.</p>\",\"PeriodicalId\":18818,\"journal\":{\"name\":\"Molecular medicine reports\",\"volume\":\"30 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413845/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular medicine reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/mmr.2024.13328\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2024.13328","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Ginkgolic acid regulates myogenic development by influencing the proliferation and differentiation of C2C12 myoblast cells.
Ginkgolic acid (GA), isolated from the leaves and seed coats of Ginkgo biloba, exerts several biological effects, including antitumor, antibacterial, anti‑HIV and anti‑inflammatory effects. However, the effects of GA on C2C12 myoblasts remain unclear. The present study assessed cell viability with the MTT assay and evaluated colony formation through crystal violet staining. Flow cytometry was used to analyze apoptosis with Annexin V/7‑AAD staining, proliferation with Ki67 staining and cell cycle arrest. Western blotting detected myogenic markers and other relevant proteins. Myotube formation was examined by immunofluorescence, and autophagy was measured using an LC3 antibody‑based kit via flow cytometry. The present study showed that treatment of C2C12 cells with GA significantly inhibited their viability and colony formation capacity but did not trigger apoptosis, as indicated by Annexin V/7‑AAD staining. However, Ki67 staining indicates that GA exerted dose‑dependent antiproliferative effects. Further analysis revealed that GA partially inhibited the growth of C2C12 cells via cell cycle arrest in S phase, highlighting its role in the disruption of cell proliferation. Furthermore, treatment with GA impaired myoblast differentiation, as evidenced by a reduction in the expression of the myogenesis markers, the myosin‑heavy chain, myoblast determination protein 1 and myogenin, and suppressed myotube formation. Notably, during C2C12 cell differentiation, GA promoted apoptosis without affecting cell cycle progression or Ki67 expression. Mechanistically, GA could suppress nuclear extracellular signal‑regulated kinase phosphorylation, suggesting that it modulates cell proliferation pathways. Moreover, GA triggered autophagy in differentiated C2C12 cells, as confirmed by elevated LC3 II levels. These findings highlight the multifaceted effects of GA on C2C12 cells.
期刊介绍:
Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.