三维卵巢和卵泡工程在生育力保存和恢复方面的创新。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Negin Chavoshinezhad, Behrooz Niknafs
{"title":"三维卵巢和卵泡工程在生育力保存和恢复方面的创新。","authors":"Negin Chavoshinezhad, Behrooz Niknafs","doi":"10.1007/s11033-024-09783-0","DOIUrl":null,"url":null,"abstract":"<p><p>In-vitro maturation (IVM) is the process of cultivating early-stage follicles from the primordial to the antral stage and facilitating the maturation of oocytes outside the body within a supportive environment. This intricate procedure requires the careful coordination of various factors to replicate the natural ovarian conditions. Advanced techniques for IVM are designed to mimic the natural ovarian environment and enhance the development of follicles. Three-dimensional (3D) culture systems provide a more biologically relevant setting for follicle growth compared to traditional two-dimensional (2D) cultures. Traditional culture systems, often fail to support the complex process of follicle development effectively. However, modern engineered reproductive tissues and culture systems are making it possible to create increasingly physiological in-vitro models of folliculogenesis. These innovative methods are enabling researchers and clinicians to better replicate the dynamic and supportive environment of the ovary, thereby improving the outcomes of IVM offering new hope for fertility preservation and treatment. This paper focuses on the routine 3D culture, and innovative 3D culture of ovary and follicles, including a tissue engineering scaffolds, microfluidic (dynamic) culture system, organ-on-chip models, EVATAR system, from a clinical perspective to determine the most effective approach for achieving in-vitro maturation of follicles. These techniques provide critical support for ovarian function in various ovarian-associated disorders, including primary ovarian insufficiency (POI), premature ovarian failure (POF), ovarian cancer, and age-related infertility.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovations in 3D ovarian and follicle engineering for fertility preservation and restoration.\",\"authors\":\"Negin Chavoshinezhad, Behrooz Niknafs\",\"doi\":\"10.1007/s11033-024-09783-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In-vitro maturation (IVM) is the process of cultivating early-stage follicles from the primordial to the antral stage and facilitating the maturation of oocytes outside the body within a supportive environment. This intricate procedure requires the careful coordination of various factors to replicate the natural ovarian conditions. Advanced techniques for IVM are designed to mimic the natural ovarian environment and enhance the development of follicles. Three-dimensional (3D) culture systems provide a more biologically relevant setting for follicle growth compared to traditional two-dimensional (2D) cultures. Traditional culture systems, often fail to support the complex process of follicle development effectively. However, modern engineered reproductive tissues and culture systems are making it possible to create increasingly physiological in-vitro models of folliculogenesis. These innovative methods are enabling researchers and clinicians to better replicate the dynamic and supportive environment of the ovary, thereby improving the outcomes of IVM offering new hope for fertility preservation and treatment. This paper focuses on the routine 3D culture, and innovative 3D culture of ovary and follicles, including a tissue engineering scaffolds, microfluidic (dynamic) culture system, organ-on-chip models, EVATAR system, from a clinical perspective to determine the most effective approach for achieving in-vitro maturation of follicles. These techniques provide critical support for ovarian function in various ovarian-associated disorders, including primary ovarian insufficiency (POI), premature ovarian failure (POF), ovarian cancer, and age-related infertility.</p>\",\"PeriodicalId\":18755,\"journal\":{\"name\":\"Molecular Biology Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11033-024-09783-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-024-09783-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

体外成熟(IVM)是将早期卵泡从原始卵泡阶段培养到前卵泡阶段,并在体外支持性环境中促进卵母细胞成熟的过程。这一复杂的过程需要精心协调各种因素,以复制自然的卵巢条件。IVM 的先进技术旨在模拟自然卵巢环境,促进卵泡发育。与传统的二维(2D)培养相比,三维(3D)培养系统为卵泡生长提供了更贴近生物学的环境。传统的培养系统往往无法有效支持卵泡发育的复杂过程。然而,现代工程生殖组织和培养系统使人们有可能创造出越来越多的卵泡生成生理体外模型。这些创新方法使研究人员和临床医生能够更好地复制卵巢的动态和支持性环境,从而改善体外受精的结果,为生育力保存和治疗带来新的希望。本文从临床角度出发,重点介绍了卵巢和卵泡的常规三维培养和创新三维培养,包括组织工程支架、微流体(动态)培养系统、片上器官模型、EVATAR 系统,以确定实现卵泡体外成熟的最有效方法。这些技术为各种卵巢相关疾病的卵巢功能提供了重要支持,包括原发性卵巢功能不全(POI)、卵巢早衰(POF)、卵巢癌和老年性不孕症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovations in 3D ovarian and follicle engineering for fertility preservation and restoration.

In-vitro maturation (IVM) is the process of cultivating early-stage follicles from the primordial to the antral stage and facilitating the maturation of oocytes outside the body within a supportive environment. This intricate procedure requires the careful coordination of various factors to replicate the natural ovarian conditions. Advanced techniques for IVM are designed to mimic the natural ovarian environment and enhance the development of follicles. Three-dimensional (3D) culture systems provide a more biologically relevant setting for follicle growth compared to traditional two-dimensional (2D) cultures. Traditional culture systems, often fail to support the complex process of follicle development effectively. However, modern engineered reproductive tissues and culture systems are making it possible to create increasingly physiological in-vitro models of folliculogenesis. These innovative methods are enabling researchers and clinicians to better replicate the dynamic and supportive environment of the ovary, thereby improving the outcomes of IVM offering new hope for fertility preservation and treatment. This paper focuses on the routine 3D culture, and innovative 3D culture of ovary and follicles, including a tissue engineering scaffolds, microfluidic (dynamic) culture system, organ-on-chip models, EVATAR system, from a clinical perspective to determine the most effective approach for achieving in-vitro maturation of follicles. These techniques provide critical support for ovarian function in various ovarian-associated disorders, including primary ovarian insufficiency (POI), premature ovarian failure (POF), ovarian cancer, and age-related infertility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信