{"title":"在代谢物鉴别和代谢组学生物信息学中找到常见误区。","authors":"Elva María Novoa-Del-Toro, Michael Witting","doi":"10.1007/s11306-024-02167-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metabolomics, the systematic analysis of small molecules in a given biological system, emerged as a powerful tool for different research questions. Newer, better, and faster methods have increased the coverage of metabolites that can be detected and identified in a shorter amount of time, generating highly dense datasets. While technology for metabolomics is still advancing, another rapidly growing field is metabolomics data analysis including metabolite identification. Within the next years, there will be a high demand for bioinformaticians and data scientists capable of analyzing metabolomics data as well as chemists capable of using in-silico tools for metabolite identification. However, metabolomics is often not included in bioinformatics curricula, nor does analytical chemistry address the challenges associated with advanced in-silico tools.</p><p><strong>Aim of review: </strong>In this educational review, we briefly summarize some key concepts and pitfalls we have encountered in a collaboration between a bioinformatician (originally not trained for metabolomics) and an analytical chemist. We identified that many misunderstandings arise from differences in knowledge about metabolite annotation and identification, and the proper use of bioinformatics approaches for these tasks. We hope that this article helps other bioinformaticians (as well as other scientists) entering the field of metabolomics bioinformatics, especially for metabolite identification, to quickly learn the necessary concepts for a successful collaboration with analytical chemists.</p><p><strong>Key scientific concepts of review: </strong>We summarize important concepts related to LC-MS/MS based non-targeted metabolomics and compare them with other data types bioinformaticians are potentially familiar with. Drawing these parallels will help foster the learning of key aspects of metabolomics.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416380/pdf/","citationCount":"0","resultStr":"{\"title\":\"Navigating common pitfalls in metabolite identification and metabolomics bioinformatics.\",\"authors\":\"Elva María Novoa-Del-Toro, Michael Witting\",\"doi\":\"10.1007/s11306-024-02167-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Metabolomics, the systematic analysis of small molecules in a given biological system, emerged as a powerful tool for different research questions. Newer, better, and faster methods have increased the coverage of metabolites that can be detected and identified in a shorter amount of time, generating highly dense datasets. While technology for metabolomics is still advancing, another rapidly growing field is metabolomics data analysis including metabolite identification. Within the next years, there will be a high demand for bioinformaticians and data scientists capable of analyzing metabolomics data as well as chemists capable of using in-silico tools for metabolite identification. However, metabolomics is often not included in bioinformatics curricula, nor does analytical chemistry address the challenges associated with advanced in-silico tools.</p><p><strong>Aim of review: </strong>In this educational review, we briefly summarize some key concepts and pitfalls we have encountered in a collaboration between a bioinformatician (originally not trained for metabolomics) and an analytical chemist. We identified that many misunderstandings arise from differences in knowledge about metabolite annotation and identification, and the proper use of bioinformatics approaches for these tasks. We hope that this article helps other bioinformaticians (as well as other scientists) entering the field of metabolomics bioinformatics, especially for metabolite identification, to quickly learn the necessary concepts for a successful collaboration with analytical chemists.</p><p><strong>Key scientific concepts of review: </strong>We summarize important concepts related to LC-MS/MS based non-targeted metabolomics and compare them with other data types bioinformaticians are potentially familiar with. Drawing these parallels will help foster the learning of key aspects of metabolomics.</p>\",\"PeriodicalId\":18506,\"journal\":{\"name\":\"Metabolomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416380/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11306-024-02167-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-024-02167-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Navigating common pitfalls in metabolite identification and metabolomics bioinformatics.
Background: Metabolomics, the systematic analysis of small molecules in a given biological system, emerged as a powerful tool for different research questions. Newer, better, and faster methods have increased the coverage of metabolites that can be detected and identified in a shorter amount of time, generating highly dense datasets. While technology for metabolomics is still advancing, another rapidly growing field is metabolomics data analysis including metabolite identification. Within the next years, there will be a high demand for bioinformaticians and data scientists capable of analyzing metabolomics data as well as chemists capable of using in-silico tools for metabolite identification. However, metabolomics is often not included in bioinformatics curricula, nor does analytical chemistry address the challenges associated with advanced in-silico tools.
Aim of review: In this educational review, we briefly summarize some key concepts and pitfalls we have encountered in a collaboration between a bioinformatician (originally not trained for metabolomics) and an analytical chemist. We identified that many misunderstandings arise from differences in knowledge about metabolite annotation and identification, and the proper use of bioinformatics approaches for these tasks. We hope that this article helps other bioinformaticians (as well as other scientists) entering the field of metabolomics bioinformatics, especially for metabolite identification, to quickly learn the necessary concepts for a successful collaboration with analytical chemists.
Key scientific concepts of review: We summarize important concepts related to LC-MS/MS based non-targeted metabolomics and compare them with other data types bioinformaticians are potentially familiar with. Drawing these parallels will help foster the learning of key aspects of metabolomics.
期刊介绍:
Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to:
metabolomic applications within man, including pre-clinical and clinical
pharmacometabolomics for precision medicine
metabolic profiling and fingerprinting
metabolite target analysis
metabolomic applications within animals, plants and microbes
transcriptomics and proteomics in systems biology
Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.