黄土高原刺槐根瘤中磷酸盐溶解细菌的分离鉴定及磷酸盐溶解能力的验证

IF 2.1 4区 环境科学与生态学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Wenrui Zhang, Yuhao Zhou, Jingru Jia, Yinjun Lu, Haoqiang Zhang
{"title":"黄土高原刺槐根瘤中磷酸盐溶解细菌的分离鉴定及磷酸盐溶解能力的验证","authors":"Wenrui Zhang, Yuhao Zhou, Jingru Jia, Yinjun Lu, Haoqiang Zhang","doi":"10.1264/jsme2.ME24001","DOIUrl":null,"url":null,"abstract":"<p><p>The Loess Plateau is one of the key areas for soil and water erosion control in China. Planting vegetation, such as Robinia pseudoacacia, is one of the mainstream methods to prevent soil and water erosion. However, the combination of abundant calcium ions and phosphate in the soil of the Loess Plateau limits the phosphorus nutrition of plants. In the present study, soil samples were collected under the R. pseudoacacia forest, from which two PSB strains with efficient phosphate solubilization capacities, named PSB2 and PSB7, were isolated and screened. The dissolved phosphate concentrations of their culture media were 9.68-fold and 11.61-fold higher, respectively, than that of the control group. After identification, PSB2 was classified as Pseudomonas and PSB7 as Inquilinus. This is the first time that Inquilinus has been isolated as a PSB from calcareous soil in the Loess Plateau. We then investigated the effects of different growth conditions on their phosphate solubilization capacities. Both strains effectively utilized glucose and ammonium nitrogen while maintaining high phosphate solubilization efficiency. In addition, PSB2 preferred to survive under neutral conditions and PSB7 under acidic conditions. Pot experiments indicated that the inoculation with PSB7 significantly increased the phosphorus content in the roots of R. pseudoacacia. These results imply the potential of this PSB as a phosphorus biofertilizer for R. pseudoacacia, which may be beneficial for soil and water management on the Loess Plateau.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427305/pdf/","citationCount":"0","resultStr":"{\"title\":\"Isolation and Identification of Phosphate-solubilizing Bacteria in the Rhizosphere of Robinia pseudoacacia on the Loess Plateau and Verification of Phosphate Solubilization Capacity.\",\"authors\":\"Wenrui Zhang, Yuhao Zhou, Jingru Jia, Yinjun Lu, Haoqiang Zhang\",\"doi\":\"10.1264/jsme2.ME24001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Loess Plateau is one of the key areas for soil and water erosion control in China. Planting vegetation, such as Robinia pseudoacacia, is one of the mainstream methods to prevent soil and water erosion. However, the combination of abundant calcium ions and phosphate in the soil of the Loess Plateau limits the phosphorus nutrition of plants. In the present study, soil samples were collected under the R. pseudoacacia forest, from which two PSB strains with efficient phosphate solubilization capacities, named PSB2 and PSB7, were isolated and screened. The dissolved phosphate concentrations of their culture media were 9.68-fold and 11.61-fold higher, respectively, than that of the control group. After identification, PSB2 was classified as Pseudomonas and PSB7 as Inquilinus. This is the first time that Inquilinus has been isolated as a PSB from calcareous soil in the Loess Plateau. We then investigated the effects of different growth conditions on their phosphate solubilization capacities. Both strains effectively utilized glucose and ammonium nitrogen while maintaining high phosphate solubilization efficiency. In addition, PSB2 preferred to survive under neutral conditions and PSB7 under acidic conditions. Pot experiments indicated that the inoculation with PSB7 significantly increased the phosphorus content in the roots of R. pseudoacacia. These results imply the potential of this PSB as a phosphorus biofertilizer for R. pseudoacacia, which may be beneficial for soil and water management on the Loess Plateau.</p>\",\"PeriodicalId\":18482,\"journal\":{\"name\":\"Microbes and Environments\",\"volume\":\"39 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427305/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbes and Environments\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1264/jsme2.ME24001\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME24001","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

黄土高原是中国水土流失治理的重点地区之一。种植刺槐等植被是防止水土流失的主流方法之一。然而,黄土高原土壤中丰富的钙离子和磷酸盐的结合限制了植物的磷营养。本研究采集了假柿树林下的土壤样本,从中分离并筛选出两种具有高效磷酸盐溶解能力的 PSB 菌株,分别命名为 PSB2 和 PSB7。它们在培养基中的溶解磷酸盐浓度分别是对照组的 9.68 倍和 11.61 倍。经过鉴定,PSB2 被归类为假单胞菌,PSB7 被归类为因奎林菌。这是首次从黄土高原的石灰性土壤中分离出 Inquilinus 作为 PSB。随后,我们研究了不同生长条件对其磷酸盐溶解能力的影响。两株菌株都能有效利用葡萄糖和铵态氮,同时保持较高的磷酸盐溶解效率。此外,PSB2 更喜欢在中性条件下生存,而 PSB7 则更喜欢在酸性条件下生存。盆栽实验表明,接种 PSB7 能显著提高 R. pseudoacacia 根部的含磷量。这些结果表明,该 PSB 具有作为假刺槐磷生物肥料的潜力,可能有利于黄土高原的水土管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isolation and Identification of Phosphate-solubilizing Bacteria in the Rhizosphere of Robinia pseudoacacia on the Loess Plateau and Verification of Phosphate Solubilization Capacity.

The Loess Plateau is one of the key areas for soil and water erosion control in China. Planting vegetation, such as Robinia pseudoacacia, is one of the mainstream methods to prevent soil and water erosion. However, the combination of abundant calcium ions and phosphate in the soil of the Loess Plateau limits the phosphorus nutrition of plants. In the present study, soil samples were collected under the R. pseudoacacia forest, from which two PSB strains with efficient phosphate solubilization capacities, named PSB2 and PSB7, were isolated and screened. The dissolved phosphate concentrations of their culture media were 9.68-fold and 11.61-fold higher, respectively, than that of the control group. After identification, PSB2 was classified as Pseudomonas and PSB7 as Inquilinus. This is the first time that Inquilinus has been isolated as a PSB from calcareous soil in the Loess Plateau. We then investigated the effects of different growth conditions on their phosphate solubilization capacities. Both strains effectively utilized glucose and ammonium nitrogen while maintaining high phosphate solubilization efficiency. In addition, PSB2 preferred to survive under neutral conditions and PSB7 under acidic conditions. Pot experiments indicated that the inoculation with PSB7 significantly increased the phosphorus content in the roots of R. pseudoacacia. These results imply the potential of this PSB as a phosphorus biofertilizer for R. pseudoacacia, which may be beneficial for soil and water management on the Loess Plateau.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbes and Environments
Microbes and Environments 生物-生物工程与应用微生物
CiteScore
4.10
自引率
13.60%
发文量
66
审稿时长
3 months
期刊介绍: Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信