{"title":"对 M.S. Elnaggar 等人撰写的 \"吉西他滨、PI3 激酶-Akt 通路抑制和人类胶质瘤细胞系中的辐射 \"发表评论1。","authors":"M B Balaji, Neha Brahma, S Vimal","doi":"10.1007/s12032-024-02503-5","DOIUrl":null,"url":null,"abstract":"<p><p>The combination of gemcitabine, PI3K-Akt pathway inhibitors, and radiation in human glioma cell lines shows potential to enhance radiation sensitivity in aggressive brain tumors. Inhibiting the overactive PI3K-Akt pathway may increase tumor vulnerability to treatment. However, variability in responses among different glioma cell lines highlights the need for personalized approaches. Future research should focus on identifying biomarkers to tailor treatment for individual patients. Additionally, addressing safety concerns and the challenges of translating preclinical findings into clinical practice is crucial. Further studies should explore the therapy's molecular mechanisms and evaluate its clinical potential.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comment on \\\"gemcitabine, PI3kinase-Akt pathway inhibition and radiation in human glioma cell lines\\\" by M.S. Elnaggar et al.<sup>1</sup>.\",\"authors\":\"M B Balaji, Neha Brahma, S Vimal\",\"doi\":\"10.1007/s12032-024-02503-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The combination of gemcitabine, PI3K-Akt pathway inhibitors, and radiation in human glioma cell lines shows potential to enhance radiation sensitivity in aggressive brain tumors. Inhibiting the overactive PI3K-Akt pathway may increase tumor vulnerability to treatment. However, variability in responses among different glioma cell lines highlights the need for personalized approaches. Future research should focus on identifying biomarkers to tailor treatment for individual patients. Additionally, addressing safety concerns and the challenges of translating preclinical findings into clinical practice is crucial. Further studies should explore the therapy's molecular mechanisms and evaluate its clinical potential.</p>\",\"PeriodicalId\":18433,\"journal\":{\"name\":\"Medical Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12032-024-02503-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-024-02503-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Comment on "gemcitabine, PI3kinase-Akt pathway inhibition and radiation in human glioma cell lines" by M.S. Elnaggar et al.1.
The combination of gemcitabine, PI3K-Akt pathway inhibitors, and radiation in human glioma cell lines shows potential to enhance radiation sensitivity in aggressive brain tumors. Inhibiting the overactive PI3K-Akt pathway may increase tumor vulnerability to treatment. However, variability in responses among different glioma cell lines highlights the need for personalized approaches. Future research should focus on identifying biomarkers to tailor treatment for individual patients. Additionally, addressing safety concerns and the challenges of translating preclinical findings into clinical practice is crucial. Further studies should explore the therapy's molecular mechanisms and evaluate its clinical potential.
期刊介绍:
Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.