Christopher M Stevens, Kathrine Weeks, Sushil K Jain
{"title":"维生素 D 和 l-Cysteine 协同补充剂下调哺乳动物雷帕霉素靶标的潜力:糖尿病的新治疗方法。","authors":"Christopher M Stevens, Kathrine Weeks, Sushil K Jain","doi":"10.1089/met.2024.0146","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes, a metabolic disease associated with an increased health care burden and mortality, is currently on the rise. Both upregulation of the mammalian target of rapamycin (mTOR) and decreased levels of vitamin D (VD) and l-cysteine (LC) have been associated with diabetes. The overactivation of mTOR leads to insulin desensitization and metabolic dysfunction including uncontrolled hyperglycemia. This review summarizes various studies that have shown an inhibitory effect of VD or LC on mTOR activity. Findings from preclinical studies suggest that optimizing the VD and LC status in patients with diabetes can result in mTOR suppression, which has the potential to protect these individuals from microvascular and macrovascular complications while enhancing the regulation of their blood glucose. Given this information, finding ways to suppress mTOR signaling and also increasing VD and LC status is a possible therapeutic approach that might aid patients with diabetes. Future clinical trials are needed to investigate whether VD and LC co-supplementation can successfully downregulate mTOR and can be used as adjuvant therapy in patients with diabetes.</p>","PeriodicalId":18405,"journal":{"name":"Metabolic syndrome and related disorders","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential of Vitamin D and l-Cysteine Co-supplementation to Downregulate Mammalian Target of Rapamycin: A Novel Therapeutic Approach to Diabetes.\",\"authors\":\"Christopher M Stevens, Kathrine Weeks, Sushil K Jain\",\"doi\":\"10.1089/met.2024.0146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes, a metabolic disease associated with an increased health care burden and mortality, is currently on the rise. Both upregulation of the mammalian target of rapamycin (mTOR) and decreased levels of vitamin D (VD) and l-cysteine (LC) have been associated with diabetes. The overactivation of mTOR leads to insulin desensitization and metabolic dysfunction including uncontrolled hyperglycemia. This review summarizes various studies that have shown an inhibitory effect of VD or LC on mTOR activity. Findings from preclinical studies suggest that optimizing the VD and LC status in patients with diabetes can result in mTOR suppression, which has the potential to protect these individuals from microvascular and macrovascular complications while enhancing the regulation of their blood glucose. Given this information, finding ways to suppress mTOR signaling and also increasing VD and LC status is a possible therapeutic approach that might aid patients with diabetes. Future clinical trials are needed to investigate whether VD and LC co-supplementation can successfully downregulate mTOR and can be used as adjuvant therapy in patients with diabetes.</p>\",\"PeriodicalId\":18405,\"journal\":{\"name\":\"Metabolic syndrome and related disorders\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic syndrome and related disorders\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/met.2024.0146\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic syndrome and related disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/met.2024.0146","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Potential of Vitamin D and l-Cysteine Co-supplementation to Downregulate Mammalian Target of Rapamycin: A Novel Therapeutic Approach to Diabetes.
Diabetes, a metabolic disease associated with an increased health care burden and mortality, is currently on the rise. Both upregulation of the mammalian target of rapamycin (mTOR) and decreased levels of vitamin D (VD) and l-cysteine (LC) have been associated with diabetes. The overactivation of mTOR leads to insulin desensitization and metabolic dysfunction including uncontrolled hyperglycemia. This review summarizes various studies that have shown an inhibitory effect of VD or LC on mTOR activity. Findings from preclinical studies suggest that optimizing the VD and LC status in patients with diabetes can result in mTOR suppression, which has the potential to protect these individuals from microvascular and macrovascular complications while enhancing the regulation of their blood glucose. Given this information, finding ways to suppress mTOR signaling and also increasing VD and LC status is a possible therapeutic approach that might aid patients with diabetes. Future clinical trials are needed to investigate whether VD and LC co-supplementation can successfully downregulate mTOR and can be used as adjuvant therapy in patients with diabetes.
期刊介绍:
Metabolic Syndrome and Related Disorders is the only peer-reviewed journal focusing solely on the pathophysiology, recognition, and treatment of this major health condition. The Journal meets the imperative for comprehensive research, data, and commentary on metabolic disorder as a suspected precursor to a wide range of diseases, including type 2 diabetes, cardiovascular disease, stroke, cancer, polycystic ovary syndrome, gout, and asthma.
Metabolic Syndrome and Related Disorders coverage includes:
-Insulin resistance-
Central obesity-
Glucose intolerance-
Dyslipidemia with elevated triglycerides-
Low HDL-cholesterol-
Microalbuminuria-
Predominance of small dense LDL-cholesterol particles-
Hypertension-
Endothelial dysfunction-
Oxidative stress-
Inflammation-
Related disorders of polycystic ovarian syndrome, fatty liver disease (NASH), and gout