Carolyn K Jons, David Cheng, Changxin Dong, Emily L Meany, Jonathan J Nassi, Eric A Appel
{"title":"用于体内显微内窥镜钙成像的基因编码活动传感器单步靶向表达的病毒载体洗脱透镜。","authors":"Carolyn K Jons, David Cheng, Changxin Dong, Emily L Meany, Jonathan J Nassi, Eric A Appel","doi":"10.1002/mabi.202400359","DOIUrl":null,"url":null,"abstract":"<p><p>Optical methods for studying the brain offer powerful approaches for understanding how neural activity underlies complex behavior. These methods typically rely on genetically encoded sensors and actuators to monitor and control neural activity. For microendoscopic calcium imaging, injection of a virus followed by implantation of a lens probe is required to express a calcium sensor and enable optical access to the target brain region. This two-step process poses several challenges, chief among them being the risks associated with mistargeting and/or misalignment between virus expression zone, lens probe and target brain region. Here, an adeno-associated virus (AAV)-eluting polymer coating is engineered for gradient refractive index (GRIN) lenses enabling the expression of a genetically encoded calcium indicator (GCaMP) directly within the brain region of interest upon implantation of the lens. This approach requires only one surgical step and guarantees alignment between GCaMP expression and lens in the brain. Additionally, the slow virus release from these coatings increases the working time for surgical implantation, expanding the brain regions and species amenable to this approach. These enhanced capabilities should accelerate neuroscience research utilizing optical methods and advance the understanding of the neural circuit mechanisms underlying brain function and behavior in health and disease.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viral Vector Eluting Lenses for Single-Step Targeted Expression of Genetically-Encoded Activity Sensors for in Vivo Microendoscopic Calcium Imaging.\",\"authors\":\"Carolyn K Jons, David Cheng, Changxin Dong, Emily L Meany, Jonathan J Nassi, Eric A Appel\",\"doi\":\"10.1002/mabi.202400359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optical methods for studying the brain offer powerful approaches for understanding how neural activity underlies complex behavior. These methods typically rely on genetically encoded sensors and actuators to monitor and control neural activity. For microendoscopic calcium imaging, injection of a virus followed by implantation of a lens probe is required to express a calcium sensor and enable optical access to the target brain region. This two-step process poses several challenges, chief among them being the risks associated with mistargeting and/or misalignment between virus expression zone, lens probe and target brain region. Here, an adeno-associated virus (AAV)-eluting polymer coating is engineered for gradient refractive index (GRIN) lenses enabling the expression of a genetically encoded calcium indicator (GCaMP) directly within the brain region of interest upon implantation of the lens. This approach requires only one surgical step and guarantees alignment between GCaMP expression and lens in the brain. Additionally, the slow virus release from these coatings increases the working time for surgical implantation, expanding the brain regions and species amenable to this approach. These enhanced capabilities should accelerate neuroscience research utilizing optical methods and advance the understanding of the neural circuit mechanisms underlying brain function and behavior in health and disease.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/mabi.202400359\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400359","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Viral Vector Eluting Lenses for Single-Step Targeted Expression of Genetically-Encoded Activity Sensors for in Vivo Microendoscopic Calcium Imaging.
Optical methods for studying the brain offer powerful approaches for understanding how neural activity underlies complex behavior. These methods typically rely on genetically encoded sensors and actuators to monitor and control neural activity. For microendoscopic calcium imaging, injection of a virus followed by implantation of a lens probe is required to express a calcium sensor and enable optical access to the target brain region. This two-step process poses several challenges, chief among them being the risks associated with mistargeting and/or misalignment between virus expression zone, lens probe and target brain region. Here, an adeno-associated virus (AAV)-eluting polymer coating is engineered for gradient refractive index (GRIN) lenses enabling the expression of a genetically encoded calcium indicator (GCaMP) directly within the brain region of interest upon implantation of the lens. This approach requires only one surgical step and guarantees alignment between GCaMP expression and lens in the brain. Additionally, the slow virus release from these coatings increases the working time for surgical implantation, expanding the brain regions and species amenable to this approach. These enhanced capabilities should accelerate neuroscience research utilizing optical methods and advance the understanding of the neural circuit mechanisms underlying brain function and behavior in health and disease.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.