利用高光谱显微镜阐明蝴蝶翅鳞的纳米结构组织和光子特性。

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2024-09-01 Epub Date: 2024-09-11 DOI:10.1098/rsif.2024.0185
Anna-Lee Jessop, Primož Pirih, Limin Wang, Nipam H Patel, Peta L Clode, Gerd E Schröder-Turk, Bodo D Wilts
{"title":"利用高光谱显微镜阐明蝴蝶翅鳞的纳米结构组织和光子特性。","authors":"Anna-Lee Jessop, Primož Pirih, Limin Wang, Nipam H Patel, Peta L Clode, Gerd E Schröder-Turk, Bodo D Wilts","doi":"10.1098/rsif.2024.0185","DOIUrl":null,"url":null,"abstract":"<p><p>Biophotonic nanostructures in butterfly wing scales remain fascinating examples of biological functional materials, with intriguing open questions with regard to formation and evolutionary function. One particularly interesting butterfly species, <i>Erora opisena</i> (Lycaenidae: Theclinae), develops wing scales that contain three-dimensional photonic crystals that closely resemble a single gyroid geometry. Unlike most other gyroid-forming butterflies, <i>E. opisena</i> develops discrete gyroid crystallites with a pronounced size gradient hinting at a developmental sequence frozen in time. Here, we present a novel application of a hyperspectral (wavelength-resolved) microscopy technique to investigate the ultrastructural organization of these gyroid crystallites in dry, adult wing scales. We show that reflectance corresponds to crystallite size, where larger crystallites reflect green wavelengths more intensely; this relationship could be used to infer size from the optical signal. We further successfully resolve the red-shifted reflectance signal from wing scales immersed in refractive index liquids with varying refractive index, including values similar to water or cytosol. Such photonic crystals with lower refractive index contrast may be similar to the hypothesized nanostructural forms in the developing butterfly scales. The ability to resolve these fainter signals hints at the potential of this facile light microscopy method for <i>in vivo</i> analysis of nanostructure formation in developing butterflies.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 218","pages":"20240185"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463223/pdf/","citationCount":"0","resultStr":"{\"title\":\"Elucidating nanostructural organization and photonic properties of butterfly wing scales using hyperspectral microscopy.\",\"authors\":\"Anna-Lee Jessop, Primož Pirih, Limin Wang, Nipam H Patel, Peta L Clode, Gerd E Schröder-Turk, Bodo D Wilts\",\"doi\":\"10.1098/rsif.2024.0185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biophotonic nanostructures in butterfly wing scales remain fascinating examples of biological functional materials, with intriguing open questions with regard to formation and evolutionary function. One particularly interesting butterfly species, <i>Erora opisena</i> (Lycaenidae: Theclinae), develops wing scales that contain three-dimensional photonic crystals that closely resemble a single gyroid geometry. Unlike most other gyroid-forming butterflies, <i>E. opisena</i> develops discrete gyroid crystallites with a pronounced size gradient hinting at a developmental sequence frozen in time. Here, we present a novel application of a hyperspectral (wavelength-resolved) microscopy technique to investigate the ultrastructural organization of these gyroid crystallites in dry, adult wing scales. We show that reflectance corresponds to crystallite size, where larger crystallites reflect green wavelengths more intensely; this relationship could be used to infer size from the optical signal. We further successfully resolve the red-shifted reflectance signal from wing scales immersed in refractive index liquids with varying refractive index, including values similar to water or cytosol. Such photonic crystals with lower refractive index contrast may be similar to the hypothesized nanostructural forms in the developing butterfly scales. The ability to resolve these fainter signals hints at the potential of this facile light microscopy method for <i>in vivo</i> analysis of nanostructure formation in developing butterflies.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"21 218\",\"pages\":\"20240185\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463223/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0185\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0185","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

蝴蝶翼鳞中的生物光子纳米结构仍然是生物功能材料的迷人范例,在其形成和进化功能方面存在着引人入胜的未决问题。一种特别有趣的蝴蝶物种 Erora opisena(蝶科:Theclinae)的翼鳞含有三维光子晶体,与单一的陀螺几何形状非常相似。与其他大多数形成陀螺状结晶的蝴蝶不同,E. opisena 长出的陀螺状结晶具有明显的尺寸梯度,暗示了一种凝固在时间中的发育序列。在这里,我们介绍了一种新颖的高光谱(波长分辨)显微镜技术,用于研究干燥的成虫翅鳞片中陀螺状结晶的超微结构组织。我们发现,反射率与晶体大小相对应,较大的晶体对绿色波长的反射更强;这种关系可用于从光学信号推断晶体大小。我们进一步成功地解析了浸入折射率不同液体(包括类似于水或细胞液的折射率)中的翼鳞的红移反射信号。这种折射率对比度较低的光子晶体可能类似于发育中的蝴蝶鳞片中假设的纳米结构形式。分辨这些较暗信号的能力暗示了这种简便的光学显微镜方法在体内分析发育中蝴蝶的纳米结构形成方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elucidating nanostructural organization and photonic properties of butterfly wing scales using hyperspectral microscopy.

Biophotonic nanostructures in butterfly wing scales remain fascinating examples of biological functional materials, with intriguing open questions with regard to formation and evolutionary function. One particularly interesting butterfly species, Erora opisena (Lycaenidae: Theclinae), develops wing scales that contain three-dimensional photonic crystals that closely resemble a single gyroid geometry. Unlike most other gyroid-forming butterflies, E. opisena develops discrete gyroid crystallites with a pronounced size gradient hinting at a developmental sequence frozen in time. Here, we present a novel application of a hyperspectral (wavelength-resolved) microscopy technique to investigate the ultrastructural organization of these gyroid crystallites in dry, adult wing scales. We show that reflectance corresponds to crystallite size, where larger crystallites reflect green wavelengths more intensely; this relationship could be used to infer size from the optical signal. We further successfully resolve the red-shifted reflectance signal from wing scales immersed in refractive index liquids with varying refractive index, including values similar to water or cytosol. Such photonic crystals with lower refractive index contrast may be similar to the hypothesized nanostructural forms in the developing butterfly scales. The ability to resolve these fainter signals hints at the potential of this facile light microscopy method for in vivo analysis of nanostructure formation in developing butterflies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信