铜绿假单胞菌的 RNA 可降低中性粒细胞的反应,有利于细菌存活。

IF 4.7 3区 医学 Q2 IMMUNOLOGY
Journal of Innate Immunity Pub Date : 2024-01-01 Epub Date: 2024-09-18 DOI:10.1159/000541414
Jose R Pittaluga, Federico Birnberg-Weiss, Agustina Serafino, Joselyn E Castro, Luis A Castillo, Daiana Martire-Greco, Paula Barrionuevo, Gabriela C Fernández, Verónica I Landoni
{"title":"铜绿假单胞菌的 RNA 可降低中性粒细胞的反应,有利于细菌存活。","authors":"Jose R Pittaluga, Federico Birnberg-Weiss, Agustina Serafino, Joselyn E Castro, Luis A Castillo, Daiana Martire-Greco, Paula Barrionuevo, Gabriela C Fernández, Verónica I Landoni","doi":"10.1159/000541414","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Epithelial and endothelial cells modulate innate immune responses in the lung, including the arrival of neutrophils (PMN), which are crucial cells for the antibacterial host defense. Cells are exposed to prokaryotic RNA (pRNA) during bacterial infections and different pRNA may promote or attenuate the inflammatory response on different immune cells. Pseudomonas aeruginosa (PAE) can cause severe pneumonia and has several immune-evading mechanisms. The aim of this study was to determine the effects of the RNA from PAE (RNAPAE) on lung epithelial, endothelial cells, and PMN, and its impact on bacterial elimination.</p><p><strong>Methods: </strong>Purified total RNAPAE was used as a stimulus on a human lung epithelial cell line (Calu-6), human microvascular endothelial cell line HMEC-1 and isolated healthy human PMN. Activation and cytokine secretion were evaluated. In addition, PMN elimination of live ECO or PAE was determined in the presence of RNAPAE.</p><p><strong>Results: </strong>We found that RNAPAE either induced a pro-inflammatory response on Calu-6 and HMEC-1 or PMN. Pre-stimulation of PMN with RNAPAE diminished activation and chemotaxis induced by live bacteria. Moreover, we found that RNAPAE reduced phagocytosis of live ECO. Finally, we also found that non-degraded fragments of small RNA (&lt;200 bp) were responsible for the PMN microbicidal attenuation during PAE elimination.</p><p><strong>Conclusion: </strong>Our results indicated that short fragments of RNAPAE diminished the immune response of PMN favoring bacterial survival.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":" ","pages":"489-500"},"PeriodicalIF":4.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521516/pdf/","citationCount":"0","resultStr":"{\"title\":\"The RNA from Pseudomonas aeruginosa Reduces Neutrophil Responses Favoring Bacterial Survival.\",\"authors\":\"Jose R Pittaluga, Federico Birnberg-Weiss, Agustina Serafino, Joselyn E Castro, Luis A Castillo, Daiana Martire-Greco, Paula Barrionuevo, Gabriela C Fernández, Verónica I Landoni\",\"doi\":\"10.1159/000541414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Epithelial and endothelial cells modulate innate immune responses in the lung, including the arrival of neutrophils (PMN), which are crucial cells for the antibacterial host defense. Cells are exposed to prokaryotic RNA (pRNA) during bacterial infections and different pRNA may promote or attenuate the inflammatory response on different immune cells. Pseudomonas aeruginosa (PAE) can cause severe pneumonia and has several immune-evading mechanisms. The aim of this study was to determine the effects of the RNA from PAE (RNAPAE) on lung epithelial, endothelial cells, and PMN, and its impact on bacterial elimination.</p><p><strong>Methods: </strong>Purified total RNAPAE was used as a stimulus on a human lung epithelial cell line (Calu-6), human microvascular endothelial cell line HMEC-1 and isolated healthy human PMN. Activation and cytokine secretion were evaluated. In addition, PMN elimination of live ECO or PAE was determined in the presence of RNAPAE.</p><p><strong>Results: </strong>We found that RNAPAE either induced a pro-inflammatory response on Calu-6 and HMEC-1 or PMN. Pre-stimulation of PMN with RNAPAE diminished activation and chemotaxis induced by live bacteria. Moreover, we found that RNAPAE reduced phagocytosis of live ECO. Finally, we also found that non-degraded fragments of small RNA (&lt;200 bp) were responsible for the PMN microbicidal attenuation during PAE elimination.</p><p><strong>Conclusion: </strong>Our results indicated that short fragments of RNAPAE diminished the immune response of PMN favoring bacterial survival.</p>\",\"PeriodicalId\":16113,\"journal\":{\"name\":\"Journal of Innate Immunity\",\"volume\":\" \",\"pages\":\"489-500\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521516/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innate Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000541414\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innate Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000541414","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导言上皮细胞和内皮细胞可调节肺部的先天性免疫反应,包括中性粒细胞(PMN)的到来,而中性粒细胞是抗菌宿主防御的关键细胞。在细菌感染过程中,细胞会接触到原核 RNA(pRNA),不同的 pRNA 可能会促进或减弱不同免疫细胞的炎症反应。铜绿假单胞菌(PAE)可导致重症肺炎,并具有多种免疫吞噬机制。本研究旨在确定来自 PAE 的 RNA(RNAPAE)对肺上皮细胞、内皮细胞和 PMN 的影响及其对细菌清除的影响:方法:用纯化的总 RNAPAE 刺激人肺上皮细胞系(Calu-6)、人微血管内皮细胞系 HMEC-1 和分离的健康人 PMN。对活化和细胞因子分泌进行了评估。此外,还测定了 PMN 在 RNAPAE 存在下消除活 ECO 或 PAE 的情况:结果:我们发现 RNAPAE 可诱导 Calu-6 和 HMEC-1 或 PMN 产生促炎反应。用 RNAPAE 预先刺激 PMN 可减少活细菌诱导的活化和趋化。此外,我们还发现 RNAPAE 减少了活 ECO 的吞噬作用。最后,我们还发现,在消除 PAE 的过程中,小 RNA 的非降解片段(<200 bp)是导致 PMN 杀微生物作用减弱的原因:我们的研究结果表明,RNAPAE 的短片段会降低 PMN 的免疫反应,有利于细菌存活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The RNA from Pseudomonas aeruginosa Reduces Neutrophil Responses Favoring Bacterial Survival.

Introduction: Epithelial and endothelial cells modulate innate immune responses in the lung, including the arrival of neutrophils (PMN), which are crucial cells for the antibacterial host defense. Cells are exposed to prokaryotic RNA (pRNA) during bacterial infections and different pRNA may promote or attenuate the inflammatory response on different immune cells. Pseudomonas aeruginosa (PAE) can cause severe pneumonia and has several immune-evading mechanisms. The aim of this study was to determine the effects of the RNA from PAE (RNAPAE) on lung epithelial, endothelial cells, and PMN, and its impact on bacterial elimination.

Methods: Purified total RNAPAE was used as a stimulus on a human lung epithelial cell line (Calu-6), human microvascular endothelial cell line HMEC-1 and isolated healthy human PMN. Activation and cytokine secretion were evaluated. In addition, PMN elimination of live ECO or PAE was determined in the presence of RNAPAE.

Results: We found that RNAPAE either induced a pro-inflammatory response on Calu-6 and HMEC-1 or PMN. Pre-stimulation of PMN with RNAPAE diminished activation and chemotaxis induced by live bacteria. Moreover, we found that RNAPAE reduced phagocytosis of live ECO. Finally, we also found that non-degraded fragments of small RNA (<200 bp) were responsible for the PMN microbicidal attenuation during PAE elimination.

Conclusion: Our results indicated that short fragments of RNAPAE diminished the immune response of PMN favoring bacterial survival.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Innate Immunity
Journal of Innate Immunity 医学-免疫学
CiteScore
10.50
自引率
1.90%
发文量
35
审稿时长
7.5 months
期刊介绍: The ''Journal of Innate Immunity'' is a bimonthly journal covering all aspects within the area of innate immunity, including evolution of the immune system, molecular biology of cells involved in innate immunity, pattern recognition and signals of ‘danger’, microbial corruption, host response and inflammation, mucosal immunity, complement and coagulation, sepsis and septic shock, molecular genomics, and development of immunotherapies. The journal publishes original research articles, short communications, reviews, commentaries and letters to the editors. In addition to regular papers, some issues feature a special section with a thematic focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信