Matthew Fatino, Katie Martin, Franck Dayan, Bradley D Hanson
{"title":"咪鲜胺在加利福尼亚农业土壤中的吸附作用及其对支链扫帚草(Phelipanche ramosa)管理的影响。","authors":"Matthew Fatino, Katie Martin, Franck Dayan, Bradley D Hanson","doi":"10.1080/03601234.2024.2406123","DOIUrl":null,"url":null,"abstract":"<p><p>Results of previous research on chemigated imazamox for control of branched broomrape (<i>Phelipanche ramosa</i>) in processing tomatoes suggested potential soil-type differences in imazamox availability. Over two years, there were differences in crop-injury between two sites less than 30-km apart: imazamox-treated tomatoes in the Davis location had relatively minor early season injury while tomatoes at the Woodland location were severely injured or killed. The following study was conducted to investigate imazamox sorption in four California soils to determine if differences in herbicide adsorption played a role in variable crop-injury observed in the field trials. To determine the sorption capacity of imazamox of each soil, a batch-equilibrium study was conducted. There were significant differences in sorbed imazamox: the clay soil had the highest adsorption (Robert's Island: 742.5 pg µL<sup>-1</sup> sorbed), followed by the sandy loam soil (Ripon: 723.9 pg µL<sup>-1</sup> sorbed), while the loam soils from both trial sites (Davis: 704.2 pg µL<sup>-1</sup> sorbed; Woodland: 699.9 pg µL<sup>-1</sup> sorbed) had the lowest adsorption and were not significantly different from one another. Results from this study illustrate only minor differences in imazamox adsorption among the soils tested which suggests that soil type was likely not a major factor contributing to differences in crop-injury.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":" ","pages":"636-641"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption of imazamox in California agricultural soils and implications for branched broomrape <i>(Phelipanche ramosa)</i> management.\",\"authors\":\"Matthew Fatino, Katie Martin, Franck Dayan, Bradley D Hanson\",\"doi\":\"10.1080/03601234.2024.2406123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Results of previous research on chemigated imazamox for control of branched broomrape (<i>Phelipanche ramosa</i>) in processing tomatoes suggested potential soil-type differences in imazamox availability. Over two years, there were differences in crop-injury between two sites less than 30-km apart: imazamox-treated tomatoes in the Davis location had relatively minor early season injury while tomatoes at the Woodland location were severely injured or killed. The following study was conducted to investigate imazamox sorption in four California soils to determine if differences in herbicide adsorption played a role in variable crop-injury observed in the field trials. To determine the sorption capacity of imazamox of each soil, a batch-equilibrium study was conducted. There were significant differences in sorbed imazamox: the clay soil had the highest adsorption (Robert's Island: 742.5 pg µL<sup>-1</sup> sorbed), followed by the sandy loam soil (Ripon: 723.9 pg µL<sup>-1</sup> sorbed), while the loam soils from both trial sites (Davis: 704.2 pg µL<sup>-1</sup> sorbed; Woodland: 699.9 pg µL<sup>-1</sup> sorbed) had the lowest adsorption and were not significantly different from one another. Results from this study illustrate only minor differences in imazamox adsorption among the soils tested which suggests that soil type was likely not a major factor contributing to differences in crop-injury.</p>\",\"PeriodicalId\":15720,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"volume\":\" \",\"pages\":\"636-641\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03601234.2024.2406123\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03601234.2024.2406123","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Adsorption of imazamox in California agricultural soils and implications for branched broomrape (Phelipanche ramosa) management.
Results of previous research on chemigated imazamox for control of branched broomrape (Phelipanche ramosa) in processing tomatoes suggested potential soil-type differences in imazamox availability. Over two years, there were differences in crop-injury between two sites less than 30-km apart: imazamox-treated tomatoes in the Davis location had relatively minor early season injury while tomatoes at the Woodland location were severely injured or killed. The following study was conducted to investigate imazamox sorption in four California soils to determine if differences in herbicide adsorption played a role in variable crop-injury observed in the field trials. To determine the sorption capacity of imazamox of each soil, a batch-equilibrium study was conducted. There were significant differences in sorbed imazamox: the clay soil had the highest adsorption (Robert's Island: 742.5 pg µL-1 sorbed), followed by the sandy loam soil (Ripon: 723.9 pg µL-1 sorbed), while the loam soils from both trial sites (Davis: 704.2 pg µL-1 sorbed; Woodland: 699.9 pg µL-1 sorbed) had the lowest adsorption and were not significantly different from one another. Results from this study illustrate only minor differences in imazamox adsorption among the soils tested which suggests that soil type was likely not a major factor contributing to differences in crop-injury.