基于人工智能的计算 H&E 染色法与化学 H&E 染色法在淋巴瘤初诊中的对比评估:简要中期报告。

IF 2.5 4区 医学 Q2 PATHOLOGY
Rima Koka, Laura M Wake, Nam K Ku, Kathryn Rice, Autumn LaRocque, Elba G Vidal, Serge Alexanian, Raymond Kozikowski, Yair Rivenson, Michael Edward Kallen
{"title":"基于人工智能的计算 H&E 染色法与化学 H&E 染色法在淋巴瘤初诊中的对比评估:简要中期报告。","authors":"Rima Koka, Laura M Wake, Nam K Ku, Kathryn Rice, Autumn LaRocque, Elba G Vidal, Serge Alexanian, Raymond Kozikowski, Yair Rivenson, Michael Edward Kallen","doi":"10.1136/jcp-2024-209643","DOIUrl":null,"url":null,"abstract":"<p><p>Microscopic review of tissue sections is of foundational importance in pathology, yet the traditional chemistry-based histology laboratory methods are labour intensive, tissue destructive, poorly scalable to the evolving needs of precision medicine and cause delays in patient diagnosis and treatment. Recent AI-based techniques offer promise in upending histology workflow; one such method developed by PictorLabs can generate near-instantaneous diagnostic images via a machine learning algorithm. Here, we demonstrate the utility of virtual staining in a blinded, wash-out controlled study of 16 cases of lymph node excisional biopsies, including a spectrum of diagnoses from reactive to lymphoma and compare the diagnostic performance of virtual and chemical H&Es across a range of stain quality, image quality, morphometric assessment and diagnostic interpretation parameters as well as proposed follow-up immunostains. Our results show non-inferior performance of virtual H&E stains across all parameters, including an improved stain quality pass rate (92% vs 79% for virtual vs chemical stains, respectively) and an equivalent rate of binary diagnostic concordance (90% vs 92%). More detailed adjudicated reviews of differential diagnoses and proposed IHC panels showed no major discordances. Virtual H&Es appear fit for purpose and non-inferior to chemical H&Es in diagnostic assessment of clinical lymph node samples, in a limited pilot study.</p>","PeriodicalId":15391,"journal":{"name":"Journal of Clinical Pathology","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of AI-based computational H&E staining versus chemical H&E staining for primary diagnosis in lymphomas: a brief interim report.\",\"authors\":\"Rima Koka, Laura M Wake, Nam K Ku, Kathryn Rice, Autumn LaRocque, Elba G Vidal, Serge Alexanian, Raymond Kozikowski, Yair Rivenson, Michael Edward Kallen\",\"doi\":\"10.1136/jcp-2024-209643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microscopic review of tissue sections is of foundational importance in pathology, yet the traditional chemistry-based histology laboratory methods are labour intensive, tissue destructive, poorly scalable to the evolving needs of precision medicine and cause delays in patient diagnosis and treatment. Recent AI-based techniques offer promise in upending histology workflow; one such method developed by PictorLabs can generate near-instantaneous diagnostic images via a machine learning algorithm. Here, we demonstrate the utility of virtual staining in a blinded, wash-out controlled study of 16 cases of lymph node excisional biopsies, including a spectrum of diagnoses from reactive to lymphoma and compare the diagnostic performance of virtual and chemical H&Es across a range of stain quality, image quality, morphometric assessment and diagnostic interpretation parameters as well as proposed follow-up immunostains. Our results show non-inferior performance of virtual H&E stains across all parameters, including an improved stain quality pass rate (92% vs 79% for virtual vs chemical stains, respectively) and an equivalent rate of binary diagnostic concordance (90% vs 92%). More detailed adjudicated reviews of differential diagnoses and proposed IHC panels showed no major discordances. Virtual H&Es appear fit for purpose and non-inferior to chemical H&Es in diagnostic assessment of clinical lymph node samples, in a limited pilot study.</p>\",\"PeriodicalId\":15391,\"journal\":{\"name\":\"Journal of Clinical Pathology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jcp-2024-209643\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jcp-2024-209643","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

组织切片的显微镜检查在病理学中具有基础性的重要意义,然而传统的基于化学的组织学实验室方法劳动强度大、对组织有破坏性、可扩展性差,无法满足精准医学不断发展的需求,而且会延误患者的诊断和治疗。最近,基于人工智能的技术有望颠覆组织学工作流程;PictorLabs 开发的一种方法可以通过机器学习算法生成近乎即时的诊断图像。在这里,我们在一项针对 16 例淋巴结切除活检病例(包括从反应性淋巴瘤到淋巴瘤的一系列诊断)的盲法冲洗对照研究中展示了虚拟染色的实用性,并比较了虚拟和化学 H&E 在一系列染色质量、图像质量、形态评估和诊断解释参数以及建议的后续免疫印迹方面的诊断性能。我们的结果表明,虚拟 H&E 染色在所有参数上的表现都不逊色,包括染色质量合格率的提高(虚拟染色与化学染色的合格率分别为 92% 与 79%)和二元诊断一致性的提高(90% 与 92%)。对鉴别诊断和建议的 IHC 面板进行更详细的裁定审查后发现,没有重大不一致之处。在一项有限的试点研究中,虚拟 H&E 似乎适合用于临床淋巴结样本的诊断评估,而且不逊于化学 H&E。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of AI-based computational H&E staining versus chemical H&E staining for primary diagnosis in lymphomas: a brief interim report.

Microscopic review of tissue sections is of foundational importance in pathology, yet the traditional chemistry-based histology laboratory methods are labour intensive, tissue destructive, poorly scalable to the evolving needs of precision medicine and cause delays in patient diagnosis and treatment. Recent AI-based techniques offer promise in upending histology workflow; one such method developed by PictorLabs can generate near-instantaneous diagnostic images via a machine learning algorithm. Here, we demonstrate the utility of virtual staining in a blinded, wash-out controlled study of 16 cases of lymph node excisional biopsies, including a spectrum of diagnoses from reactive to lymphoma and compare the diagnostic performance of virtual and chemical H&Es across a range of stain quality, image quality, morphometric assessment and diagnostic interpretation parameters as well as proposed follow-up immunostains. Our results show non-inferior performance of virtual H&E stains across all parameters, including an improved stain quality pass rate (92% vs 79% for virtual vs chemical stains, respectively) and an equivalent rate of binary diagnostic concordance (90% vs 92%). More detailed adjudicated reviews of differential diagnoses and proposed IHC panels showed no major discordances. Virtual H&Es appear fit for purpose and non-inferior to chemical H&Es in diagnostic assessment of clinical lymph node samples, in a limited pilot study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
2.90%
发文量
113
审稿时长
3-8 weeks
期刊介绍: Journal of Clinical Pathology is a leading international journal covering all aspects of pathology. Diagnostic and research areas covered include histopathology, virology, haematology, microbiology, cytopathology, chemical pathology, molecular pathology, forensic pathology, dermatopathology, neuropathology and immunopathology. Each issue contains Reviews, Original articles, Short reports, Correspondence and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信