自组装抗菌纳米纤维负载定向人造皮肤在糖尿病相关感染伤口再生中的应用。

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Jie Yang, Shengyun Li
{"title":"自组装抗菌纳米纤维负载定向人造皮肤在糖尿病相关感染伤口再生中的应用。","authors":"Jie Yang, Shengyun Li","doi":"10.1177/08853282241267253","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic patients develop wounds that exhibit delayed healing, prolonged inflammatory responses, and slower epithelialization kinetics compared to non-diabetic patients. Diabetic foot ulcers(DFUs) affect approximately 18.6 million people worldwide. The presence of a high glucose microenvironment in DFUs results in the significant accumulation of bacterial infection and advanced glycation end products (AGEs). To solve this, a self-assemble antibacterial nanofiber(ANF) loaded oriential artificial skin (ANF@OAS) was introduced in this research, which is consisted of L/D-phenylalanine derivatives coupled the natural antimicrobial peptides. The ANF@OAS can effectively reduce AGEs production and suppress multiple resistant bacteria. Additionally, the ANF@OAS can suppress infection and stimulate wound healing in infected diabetic mice.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241267253"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of self-assembled antibacterial nanofiber loaded oriented artificial skin in infected diabetic-related wound regeneration.\",\"authors\":\"Jie Yang, Shengyun Li\",\"doi\":\"10.1177/08853282241267253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic patients develop wounds that exhibit delayed healing, prolonged inflammatory responses, and slower epithelialization kinetics compared to non-diabetic patients. Diabetic foot ulcers(DFUs) affect approximately 18.6 million people worldwide. The presence of a high glucose microenvironment in DFUs results in the significant accumulation of bacterial infection and advanced glycation end products (AGEs). To solve this, a self-assemble antibacterial nanofiber(ANF) loaded oriential artificial skin (ANF@OAS) was introduced in this research, which is consisted of L/D-phenylalanine derivatives coupled the natural antimicrobial peptides. The ANF@OAS can effectively reduce AGEs production and suppress multiple resistant bacteria. Additionally, the ANF@OAS can suppress infection and stimulate wound healing in infected diabetic mice.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"8853282241267253\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282241267253\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241267253","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

与非糖尿病患者相比,糖尿病患者的伤口愈合延迟、炎症反应持续时间长、上皮化速度慢。全球约有 1,860 万人患有糖尿病足溃疡。为了解决这一问题,本研究推出了一种自组装抗菌纳米纤维(ANF)负载的人工皮肤(ANF@OAS)。ANF@OAS 能有效减少 AGEs 的产生,抑制多种耐药菌。此外,ANF@OAS 还能抑制感染,刺激受感染的糖尿病小鼠伤口愈合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of self-assembled antibacterial nanofiber loaded oriented artificial skin in infected diabetic-related wound regeneration.

Diabetic patients develop wounds that exhibit delayed healing, prolonged inflammatory responses, and slower epithelialization kinetics compared to non-diabetic patients. Diabetic foot ulcers(DFUs) affect approximately 18.6 million people worldwide. The presence of a high glucose microenvironment in DFUs results in the significant accumulation of bacterial infection and advanced glycation end products (AGEs). To solve this, a self-assemble antibacterial nanofiber(ANF) loaded oriential artificial skin (ANF@OAS) was introduced in this research, which is consisted of L/D-phenylalanine derivatives coupled the natural antimicrobial peptides. The ANF@OAS can effectively reduce AGEs production and suppress multiple resistant bacteria. Additionally, the ANF@OAS can suppress infection and stimulate wound healing in infected diabetic mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信