Nur Rahmiati, Retno Sari, Tutik Sri Wahyuni, Maria Lucia Ardhani Dwi Lestari
{"title":"通过壳聚糖-精氨酸聚电解质微颗粒提高酸橙汁粉的抗氧化性:配方、表征和稳定性研究","authors":"Nur Rahmiati, Retno Sari, Tutik Sri Wahyuni, Maria Lucia Ardhani Dwi Lestari","doi":"10.4103/JAPTR.JAPTR_556_23","DOIUrl":null,"url":null,"abstract":"<p><p>Lime (<i>Citrus</i> <i>aurantifolia</i>) juice was reported to contain ascorbic acid (AA) and flavonoids, which has bioactivity as antioxidants. To develop an antioxidant product, improving its stability is necessary due to the perishable characteristics of compounds in lime. Therefore, the formulation of polyelectrolyte microparticles using chitosan and alginate was conducted to overcome the weaknesses. This study aims to evaluate the effect of various chitosan, alginate, and lime juice powder (LJP) concentrations on the physical characteristics and antioxidant activity of LJP encapsulated in chitosan-alginate microparticles (CALM). Microparticles with various concentrations of chitosan and alginate were prepared by ionic gelation method using CaCl<sub>2</sub> as a crosslinker. The microparticles were evaluated for its physical properties and its antioxidant activity using 2-2-diphenyl-1-picrylhydrazyl reagent. A one-way ANOVA test and Tukey's honest significant difference <i>post hoc</i> were used to determine the effect of LJP amount on the antioxidant activity. The highest AA content in CALM was 0.14 mg/100 mg, with a % encapsulation efficiency of 18.38% ± 0.02%. Antioxidant activity tests revealed that LJP possessed the strong antioxidant activity with an IC<sub>50</sub> value of 32.59 μg/mL, whereas IC<sub>50</sub> values of the microparticles ranged from 24.79 ± 0.03 μg/mL to 39.96 ± 0.07 μg/mL. During storage, the IC<sub>50</sub> of LJP decreased from 32.59 ± 0.13 μg/mL to 65.53 ± 0.03 μg/mL, whereas the IC<sub>50</sub> of microparticles remained stable. This study concluded that the chitosan-alginate polyelectrolyte microparticle formulation can improve and protect LJP's antioxidant activity.</p>","PeriodicalId":14877,"journal":{"name":"Journal of Advanced Pharmaceutical Technology & Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404427/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing antioxidant properties of lime juice powder through polyelectrolyte microparticles of chitosan-alginate: Formulation, characterization and stability study.\",\"authors\":\"Nur Rahmiati, Retno Sari, Tutik Sri Wahyuni, Maria Lucia Ardhani Dwi Lestari\",\"doi\":\"10.4103/JAPTR.JAPTR_556_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lime (<i>Citrus</i> <i>aurantifolia</i>) juice was reported to contain ascorbic acid (AA) and flavonoids, which has bioactivity as antioxidants. To develop an antioxidant product, improving its stability is necessary due to the perishable characteristics of compounds in lime. Therefore, the formulation of polyelectrolyte microparticles using chitosan and alginate was conducted to overcome the weaknesses. This study aims to evaluate the effect of various chitosan, alginate, and lime juice powder (LJP) concentrations on the physical characteristics and antioxidant activity of LJP encapsulated in chitosan-alginate microparticles (CALM). Microparticles with various concentrations of chitosan and alginate were prepared by ionic gelation method using CaCl<sub>2</sub> as a crosslinker. The microparticles were evaluated for its physical properties and its antioxidant activity using 2-2-diphenyl-1-picrylhydrazyl reagent. A one-way ANOVA test and Tukey's honest significant difference <i>post hoc</i> were used to determine the effect of LJP amount on the antioxidant activity. The highest AA content in CALM was 0.14 mg/100 mg, with a % encapsulation efficiency of 18.38% ± 0.02%. Antioxidant activity tests revealed that LJP possessed the strong antioxidant activity with an IC<sub>50</sub> value of 32.59 μg/mL, whereas IC<sub>50</sub> values of the microparticles ranged from 24.79 ± 0.03 μg/mL to 39.96 ± 0.07 μg/mL. During storage, the IC<sub>50</sub> of LJP decreased from 32.59 ± 0.13 μg/mL to 65.53 ± 0.03 μg/mL, whereas the IC<sub>50</sub> of microparticles remained stable. This study concluded that the chitosan-alginate polyelectrolyte microparticle formulation can improve and protect LJP's antioxidant activity.</p>\",\"PeriodicalId\":14877,\"journal\":{\"name\":\"Journal of Advanced Pharmaceutical Technology & Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404427/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Pharmaceutical Technology & Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/JAPTR.JAPTR_556_23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Pharmaceutical Technology & Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/JAPTR.JAPTR_556_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Enhancing antioxidant properties of lime juice powder through polyelectrolyte microparticles of chitosan-alginate: Formulation, characterization and stability study.
Lime (Citrusaurantifolia) juice was reported to contain ascorbic acid (AA) and flavonoids, which has bioactivity as antioxidants. To develop an antioxidant product, improving its stability is necessary due to the perishable characteristics of compounds in lime. Therefore, the formulation of polyelectrolyte microparticles using chitosan and alginate was conducted to overcome the weaknesses. This study aims to evaluate the effect of various chitosan, alginate, and lime juice powder (LJP) concentrations on the physical characteristics and antioxidant activity of LJP encapsulated in chitosan-alginate microparticles (CALM). Microparticles with various concentrations of chitosan and alginate were prepared by ionic gelation method using CaCl2 as a crosslinker. The microparticles were evaluated for its physical properties and its antioxidant activity using 2-2-diphenyl-1-picrylhydrazyl reagent. A one-way ANOVA test and Tukey's honest significant difference post hoc were used to determine the effect of LJP amount on the antioxidant activity. The highest AA content in CALM was 0.14 mg/100 mg, with a % encapsulation efficiency of 18.38% ± 0.02%. Antioxidant activity tests revealed that LJP possessed the strong antioxidant activity with an IC50 value of 32.59 μg/mL, whereas IC50 values of the microparticles ranged from 24.79 ± 0.03 μg/mL to 39.96 ± 0.07 μg/mL. During storage, the IC50 of LJP decreased from 32.59 ± 0.13 μg/mL to 65.53 ± 0.03 μg/mL, whereas the IC50 of microparticles remained stable. This study concluded that the chitosan-alginate polyelectrolyte microparticle formulation can improve and protect LJP's antioxidant activity.
期刊介绍:
Journal of Advanced Pharmaceutical Technology & Research (JAPTR) is an Official Publication of Society of Pharmaceutical Education & Research™. It is an international journal published Quarterly. Journal of Advanced Pharmaceutical Technology & Research (JAPTR) is available in online and print version. It is a peer reviewed journal aiming to communicate high quality original research work, reviews, short communications, case report, Ethics Forum, Education Forum and Letter to editor that contribute significantly to further the scientific knowledge related to the field of Pharmacy i.e. Pharmaceutics, Pharmacology, Pharmacognosy, Pharmaceutical Chemistry. Articles with timely interest and newer research concepts will be given more preference.