基于心电图的深度学习预测法洛氏四联症修复后的死亡率

IF 8 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Joshua Mayourian, Juul P A van Boxtel, Lynn A Sleeper, Vedang Diwanji, Alon Geva, Edward T O'Leary, John K Triedman, Sunil J Ghelani, Rachel M Wald, Anne Marie Valente, Tal Geva
{"title":"基于心电图的深度学习预测法洛氏四联症修复后的死亡率","authors":"Joshua Mayourian, Juul P A van Boxtel, Lynn A Sleeper, Vedang Diwanji, Alon Geva, Edward T O'Leary, John K Triedman, Sunil J Ghelani, Rachel M Wald, Anne Marie Valente, Tal Geva","doi":"10.1016/j.jacep.2024.07.015","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence-enhanced electrocardiogram (AI-ECG) analysis shows promise to predict mortality in adults with acquired cardiovascular diseases. However, its application to the growing repaired tetralogy of Fallot (rTOF) population remains unexplored.</p><p><strong>Objectives: </strong>This study aimed to develop and externally validate an AI-ECG model to predict 5-year mortality in rTOF.</p><p><strong>Methods: </strong>A convolutional neural network was trained on electrocardiograms (ECGs) obtained at Boston Children's Hospital and tested on Boston (internal testing) and Toronto (external validation) INDICATOR (International Multicenter TOF Registry) cohorts to predict 5-year mortality. Model performance was evaluated on single ECGs per patient using area under the receiver operating (AUROC) and precision recall (AUPRC) curves.</p><p><strong>Results: </strong>The internal testing and external validation cohorts comprised of 1,054 patients (13,077 ECGs at median age 17.8 [Q1-Q3: 7.9-30.5] years; 54% male; 6.1% mortality) and 335 patients (5,014 ECGs at median age 38.3 [Q1-Q3: 29.1-48.7] years; 57% male; 8.4% mortality), respectively. Model performance was similar during internal testing (AUROC 0.83, AUPRC 0.18) and external validation (AUROC 0.81, AUPRC 0.21). AI-ECG performed similarly to the biventricular global function index (an imaging biomarker) and outperformed QRS duration. AI-ECG 5-year mortality prediction, but not QRS duration, was a significant independent predictor when added into a Cox regression model with biventricular global function index to predict shorter time-to-death on internal and external cohorts. Saliency mapping identified QRS fragmentation, wide and low amplitude QRS complexes, and flattened T waves as high-risk features.</p><p><strong>Conclusions: </strong>This externally validated AI-ECG model may complement imaging biomarkers to improve risk stratification in patients with rTOF.</p>","PeriodicalId":14573,"journal":{"name":"JACC. Clinical electrophysiology","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocardiogram-Based Deep Learning to Predict Mortality in Repaired Tetralogy of Fallot.\",\"authors\":\"Joshua Mayourian, Juul P A van Boxtel, Lynn A Sleeper, Vedang Diwanji, Alon Geva, Edward T O'Leary, John K Triedman, Sunil J Ghelani, Rachel M Wald, Anne Marie Valente, Tal Geva\",\"doi\":\"10.1016/j.jacep.2024.07.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Artificial intelligence-enhanced electrocardiogram (AI-ECG) analysis shows promise to predict mortality in adults with acquired cardiovascular diseases. However, its application to the growing repaired tetralogy of Fallot (rTOF) population remains unexplored.</p><p><strong>Objectives: </strong>This study aimed to develop and externally validate an AI-ECG model to predict 5-year mortality in rTOF.</p><p><strong>Methods: </strong>A convolutional neural network was trained on electrocardiograms (ECGs) obtained at Boston Children's Hospital and tested on Boston (internal testing) and Toronto (external validation) INDICATOR (International Multicenter TOF Registry) cohorts to predict 5-year mortality. Model performance was evaluated on single ECGs per patient using area under the receiver operating (AUROC) and precision recall (AUPRC) curves.</p><p><strong>Results: </strong>The internal testing and external validation cohorts comprised of 1,054 patients (13,077 ECGs at median age 17.8 [Q1-Q3: 7.9-30.5] years; 54% male; 6.1% mortality) and 335 patients (5,014 ECGs at median age 38.3 [Q1-Q3: 29.1-48.7] years; 57% male; 8.4% mortality), respectively. Model performance was similar during internal testing (AUROC 0.83, AUPRC 0.18) and external validation (AUROC 0.81, AUPRC 0.21). AI-ECG performed similarly to the biventricular global function index (an imaging biomarker) and outperformed QRS duration. AI-ECG 5-year mortality prediction, but not QRS duration, was a significant independent predictor when added into a Cox regression model with biventricular global function index to predict shorter time-to-death on internal and external cohorts. Saliency mapping identified QRS fragmentation, wide and low amplitude QRS complexes, and flattened T waves as high-risk features.</p><p><strong>Conclusions: </strong>This externally validated AI-ECG model may complement imaging biomarkers to improve risk stratification in patients with rTOF.</p>\",\"PeriodicalId\":14573,\"journal\":{\"name\":\"JACC. Clinical electrophysiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACC. Clinical electrophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jacep.2024.07.015\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC. Clinical electrophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jacep.2024.07.015","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:人工智能增强心电图(AI-ECG)分析有望预测成人后天性心血管疾病患者的死亡率。然而,其在日益增长的法洛氏四联症(rTOF)修复人群中的应用仍有待探索:本研究旨在开发并从外部验证一个人工智能心电图模型,以预测法洛氏四联症患者的 5 年死亡率:在波士顿儿童医院获得的心电图(ECG)上训练了一个卷积神经网络,并在波士顿(内部测试)和多伦多(外部验证)INDICATOR(国际多中心TOF注册)队列中进行了测试,以预测5年死亡率。使用接收者操作(AUROC)和精确召回(AUPRC)曲线对每位患者的单张心电图进行了模型性能评估:内部测试组和外部验证组分别包括 1,054 名患者(13,077 张心电图,中位年龄为 17.8 [Q1-Q3: 7.9-30.5] 岁;54% 为男性;死亡率为 6.1%)和 335 名患者(5,014 张心电图,中位年龄为 38.3 [Q1-Q3: 29.1-48.7] 岁;57% 为男性;死亡率为 8.4%)。模型在内部测试(AUROC 0.83,AUPRC 0.18)和外部验证(AUROC 0.81,AUPRC 0.21)中的表现相似。AI-ECG的表现与双心室整体功能指数(成像生物标志物)相似,而优于QRS持续时间。当将 AI-ECG 与双心室整体功能指数一起加入 Cox 回归模型以预测内部和外部队列的较短死亡时间时,AI-ECG(而非 QRS 持续时间)是一个重要的独立预测因子。Saliency mapping确定QRS片段、宽而低振幅的QRS波群和平坦的T波为高风险特征:这一经外部验证的人工智能-心电图模型可与影像生物标志物互补,从而改善 rTOF 患者的风险分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrocardiogram-Based Deep Learning to Predict Mortality in Repaired Tetralogy of Fallot.

Background: Artificial intelligence-enhanced electrocardiogram (AI-ECG) analysis shows promise to predict mortality in adults with acquired cardiovascular diseases. However, its application to the growing repaired tetralogy of Fallot (rTOF) population remains unexplored.

Objectives: This study aimed to develop and externally validate an AI-ECG model to predict 5-year mortality in rTOF.

Methods: A convolutional neural network was trained on electrocardiograms (ECGs) obtained at Boston Children's Hospital and tested on Boston (internal testing) and Toronto (external validation) INDICATOR (International Multicenter TOF Registry) cohorts to predict 5-year mortality. Model performance was evaluated on single ECGs per patient using area under the receiver operating (AUROC) and precision recall (AUPRC) curves.

Results: The internal testing and external validation cohorts comprised of 1,054 patients (13,077 ECGs at median age 17.8 [Q1-Q3: 7.9-30.5] years; 54% male; 6.1% mortality) and 335 patients (5,014 ECGs at median age 38.3 [Q1-Q3: 29.1-48.7] years; 57% male; 8.4% mortality), respectively. Model performance was similar during internal testing (AUROC 0.83, AUPRC 0.18) and external validation (AUROC 0.81, AUPRC 0.21). AI-ECG performed similarly to the biventricular global function index (an imaging biomarker) and outperformed QRS duration. AI-ECG 5-year mortality prediction, but not QRS duration, was a significant independent predictor when added into a Cox regression model with biventricular global function index to predict shorter time-to-death on internal and external cohorts. Saliency mapping identified QRS fragmentation, wide and low amplitude QRS complexes, and flattened T waves as high-risk features.

Conclusions: This externally validated AI-ECG model may complement imaging biomarkers to improve risk stratification in patients with rTOF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JACC. Clinical electrophysiology
JACC. Clinical electrophysiology CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
10.30
自引率
5.70%
发文量
250
期刊介绍: JACC: Clinical Electrophysiology is one of a family of specialist journals launched by the renowned Journal of the American College of Cardiology (JACC). It encompasses all aspects of the epidemiology, pathogenesis, diagnosis and treatment of cardiac arrhythmias. Submissions of original research and state-of-the-art reviews from cardiology, cardiovascular surgery, neurology, outcomes research, and related fields are encouraged. Experimental and preclinical work that directly relates to diagnostic or therapeutic interventions are also encouraged. In general, case reports will not be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信