辅料对多药无定形制剂的过饱和度、粒度动力学和热力学活性的影响。

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
{"title":"辅料对多药无定形制剂的过饱和度、粒度动力学和热力学活性的影响。","authors":"","doi":"10.1016/j.ijpharm.2024.124738","DOIUrl":null,"url":null,"abstract":"<div><div>Multidrug formulations enhance patient compliance and extend the life cycle of pharmaceutical products. To overcome solubility challenges for multidrug combinations, amorphous formulations are commonly used. However, the excipients for creating amorphous formulations are often selected without an understanding of their effects on the bioavailability of the drugs. In this context, we investigated the impact of three types of excipients (polymers, surfactants and amino acids) on the supersaturation and thermodynamic activity of multidrug amorphous formulations. Additionally, we studied the particle size dynamics of the colloidal phase formed as a result of liquid–liquid phase separation. The amorphous solubility of two drugs, atazanavir and ritonavir, was determined in solutions containing predissolved excipients and the particle size dynamics of the colloidal particles was measured by dynamic light scattering. Dissolution experiments of atazanavir and ritonavir were conducted in predissolved sodium dodecyl sulfate (SDS), an anionic surfactant, and alanine solutions under non-sink conditions. Membrane transport of the drugs was evaluated using a MicroFLUX setup. The polymers had only minor effects on the amorphous solubility, but SDS significantly increased the solubilities of both drugs. In contrast, the other non-ionic surfactants and amino acids reduced the solubility of atazanavir but had no negative effect on ritonavir. Polymers were effective in maintaining supersaturation and preventing the coarsening of the colloidal particles. Conversely, alanine was neither able to inhibit the solution crystallization nor increase the flux of either drug. Despite the increase in the amorphous solubility of both drugs in SDS, flux was reduced. These results highlight the importance of properly selecting excipients for supersaturating amorphous formulations. The choice of excipient impacts the thermodynamic activity, the phase behaviour of the drugs and hence, the resulting absorption after oral intake.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excipient effects on supersaturation, particle size dynamics, and thermodynamic activity of multidrug amorphous formulations\",\"authors\":\"\",\"doi\":\"10.1016/j.ijpharm.2024.124738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multidrug formulations enhance patient compliance and extend the life cycle of pharmaceutical products. To overcome solubility challenges for multidrug combinations, amorphous formulations are commonly used. However, the excipients for creating amorphous formulations are often selected without an understanding of their effects on the bioavailability of the drugs. In this context, we investigated the impact of three types of excipients (polymers, surfactants and amino acids) on the supersaturation and thermodynamic activity of multidrug amorphous formulations. Additionally, we studied the particle size dynamics of the colloidal phase formed as a result of liquid–liquid phase separation. The amorphous solubility of two drugs, atazanavir and ritonavir, was determined in solutions containing predissolved excipients and the particle size dynamics of the colloidal particles was measured by dynamic light scattering. Dissolution experiments of atazanavir and ritonavir were conducted in predissolved sodium dodecyl sulfate (SDS), an anionic surfactant, and alanine solutions under non-sink conditions. Membrane transport of the drugs was evaluated using a MicroFLUX setup. The polymers had only minor effects on the amorphous solubility, but SDS significantly increased the solubilities of both drugs. In contrast, the other non-ionic surfactants and amino acids reduced the solubility of atazanavir but had no negative effect on ritonavir. Polymers were effective in maintaining supersaturation and preventing the coarsening of the colloidal particles. Conversely, alanine was neither able to inhibit the solution crystallization nor increase the flux of either drug. Despite the increase in the amorphous solubility of both drugs in SDS, flux was reduced. These results highlight the importance of properly selecting excipients for supersaturating amorphous formulations. The choice of excipient impacts the thermodynamic activity, the phase behaviour of the drugs and hence, the resulting absorption after oral intake.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517324009724\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324009724","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

多药制剂可提高患者的依从性,延长药品的生命周期。为了克服多药复方制剂在溶解度方面的难题,通常采用无定形制剂。然而,在选择制作无定形制剂的辅料时,往往不了解它们对药物生物利用度的影响。在这种情况下,我们研究了三种辅料(聚合物、表面活性剂和氨基酸)对多药无定形制剂的过饱和度和热力学活性的影响。此外,我们还研究了液-液相分离后形成的胶体相的粒度动态。我们测定了阿扎那韦和利托那韦两种药物在含有预溶解辅料的溶液中的无定形溶解度,并通过动态光散射测量了胶体颗粒的粒度动态。在非沉降条件下,在预先溶解的十二烷基硫酸钠(SDS)(一种阴离子表面活性剂)和丙氨酸溶液中进行了阿扎那韦和利托那韦的溶解实验。使用 MicroFLUX 装置对药物的膜传输进行了评估。聚合物对无定形溶解度的影响很小,但 SDS 能显著提高两种药物的溶解度。相比之下,其他非离子表面活性剂和氨基酸降低了阿扎那韦的溶解度,但对利托那韦没有负面影响。聚合物能有效维持过饱和度,防止胶体颗粒变粗。相反,丙氨酸既不能抑制溶液结晶,也不能增加两种药物的通量。尽管两种药物在 SDS 中的无定形溶解度都有所增加,但通量却有所降低。这些结果凸显了为过饱和无定形制剂正确选择辅料的重要性。辅料的选择会影响药物的热力学活性和相行为,进而影响口服后的吸收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Excipient effects on supersaturation, particle size dynamics, and thermodynamic activity of multidrug amorphous formulations
Multidrug formulations enhance patient compliance and extend the life cycle of pharmaceutical products. To overcome solubility challenges for multidrug combinations, amorphous formulations are commonly used. However, the excipients for creating amorphous formulations are often selected without an understanding of their effects on the bioavailability of the drugs. In this context, we investigated the impact of three types of excipients (polymers, surfactants and amino acids) on the supersaturation and thermodynamic activity of multidrug amorphous formulations. Additionally, we studied the particle size dynamics of the colloidal phase formed as a result of liquid–liquid phase separation. The amorphous solubility of two drugs, atazanavir and ritonavir, was determined in solutions containing predissolved excipients and the particle size dynamics of the colloidal particles was measured by dynamic light scattering. Dissolution experiments of atazanavir and ritonavir were conducted in predissolved sodium dodecyl sulfate (SDS), an anionic surfactant, and alanine solutions under non-sink conditions. Membrane transport of the drugs was evaluated using a MicroFLUX setup. The polymers had only minor effects on the amorphous solubility, but SDS significantly increased the solubilities of both drugs. In contrast, the other non-ionic surfactants and amino acids reduced the solubility of atazanavir but had no negative effect on ritonavir. Polymers were effective in maintaining supersaturation and preventing the coarsening of the colloidal particles. Conversely, alanine was neither able to inhibit the solution crystallization nor increase the flux of either drug. Despite the increase in the amorphous solubility of both drugs in SDS, flux was reduced. These results highlight the importance of properly selecting excipients for supersaturating amorphous formulations. The choice of excipient impacts the thermodynamic activity, the phase behaviour of the drugs and hence, the resulting absorption after oral intake.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信