用于深部植入物不间断超声波供电和反向通信的稳健反向散射调制方案。

IF 3 2区 工程技术 Q1 ACOUSTICS
Lukas Holzapfel, Vasiliki Giagka
{"title":"用于深部植入物不间断超声波供电和反向通信的稳健反向散射调制方案。","authors":"Lukas Holzapfel, Vasiliki Giagka","doi":"10.1109/TUFFC.2024.3465268","DOIUrl":null,"url":null,"abstract":"<p><p>Traditionally, implants are powered by batteries, which have to be recharged by an inductive power link. In the recent years, ultrasonic power links are being investigated, promising more available power for deeply implanted miniaturized devices. These implants often need to transfer back information. For ultrasonically powered implants, this is usually achieved with On-Off Keying based on backscatter modulation, or active driving of a secondary transducer. In this paper, we propose to superimpose subcarriers, effectively leveraging Frequency-Shift Keying, which increases the robustness of the link against interference and fading. It also allows for simultaneous powering and communication, and inherently provides the possibility of frequency domain multiplexing for implant networks. The modulation scheme can be implemented in miniaturized application specific integrated circuits, field programmable gate arrays, and microcontrollers. We have validated this modulation scheme in a water tank during continuous ultrasound and movement. We achieved symbol rates of up to 104 kBd, and were able to transfer data through 20 cm of water and through a 5 cm tissue phantom with additional misalignment and during movements. This approach could provide a robust uplink for miniaturized implants that are located deep inside the body and need continuous ultrasonic powering.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Backscatter Modulation Scheme for Uninterrupted Ultrasonic Powering and Back-Communication of Deep Implants.\",\"authors\":\"Lukas Holzapfel, Vasiliki Giagka\",\"doi\":\"10.1109/TUFFC.2024.3465268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditionally, implants are powered by batteries, which have to be recharged by an inductive power link. In the recent years, ultrasonic power links are being investigated, promising more available power for deeply implanted miniaturized devices. These implants often need to transfer back information. For ultrasonically powered implants, this is usually achieved with On-Off Keying based on backscatter modulation, or active driving of a secondary transducer. In this paper, we propose to superimpose subcarriers, effectively leveraging Frequency-Shift Keying, which increases the robustness of the link against interference and fading. It also allows for simultaneous powering and communication, and inherently provides the possibility of frequency domain multiplexing for implant networks. The modulation scheme can be implemented in miniaturized application specific integrated circuits, field programmable gate arrays, and microcontrollers. We have validated this modulation scheme in a water tank during continuous ultrasound and movement. We achieved symbol rates of up to 104 kBd, and were able to transfer data through 20 cm of water and through a 5 cm tissue phantom with additional misalignment and during movements. This approach could provide a robust uplink for miniaturized implants that are located deep inside the body and need continuous ultrasonic powering.</p>\",\"PeriodicalId\":13322,\"journal\":{\"name\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TUFFC.2024.3465268\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TUFFC.2024.3465268","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

传统上,植入体由电池供电,而电池必须通过感应式电源链路充电。近年来,人们正在研究超声波电源链接,有望为深度植入的微型设备提供更多可用电源。这些植入体通常需要回传信息。对于超声波供电的植入体来说,这通常是通过基于反向散射调制的开-关键控或二级换能器的主动驱动来实现的。在本文中,我们建议叠加子载波,有效利用移频键控,从而提高链路抗干扰和抗衰减的能力。它还允许同时供电和通信,并为植入网络提供了频域多路复用的可能性。该调制方案可在微型专用集成电路、现场可编程门阵列和微控制器中实施。我们已在水箱中的连续超声波和运动中验证了这一调制方案。我们实现了高达 104 kBd 的符号传输速率,并能通过 20 厘米的水和 5 厘米的组织模型传输数据,同时还能在移动过程中进行额外的错位。这种方法可为位于体内深处、需要持续超声波供电的微型植入物提供强大的上行链路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Backscatter Modulation Scheme for Uninterrupted Ultrasonic Powering and Back-Communication of Deep Implants.

Traditionally, implants are powered by batteries, which have to be recharged by an inductive power link. In the recent years, ultrasonic power links are being investigated, promising more available power for deeply implanted miniaturized devices. These implants often need to transfer back information. For ultrasonically powered implants, this is usually achieved with On-Off Keying based on backscatter modulation, or active driving of a secondary transducer. In this paper, we propose to superimpose subcarriers, effectively leveraging Frequency-Shift Keying, which increases the robustness of the link against interference and fading. It also allows for simultaneous powering and communication, and inherently provides the possibility of frequency domain multiplexing for implant networks. The modulation scheme can be implemented in miniaturized application specific integrated circuits, field programmable gate arrays, and microcontrollers. We have validated this modulation scheme in a water tank during continuous ultrasound and movement. We achieved symbol rates of up to 104 kBd, and were able to transfer data through 20 cm of water and through a 5 cm tissue phantom with additional misalignment and during movements. This approach could provide a robust uplink for miniaturized implants that are located deep inside the body and need continuous ultrasonic powering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
16.70%
发文量
583
审稿时长
4.5 months
期刊介绍: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信