{"title":"碳水化合物反应元件结合蛋白(ChREBP)介导糖尿病后藤柿崎(GK)大鼠胰岛中 SNAP25 表达的降低。","authors":"Anyi Hu, Hongyan Lan, Zilai Yao, Xiangchen Kong","doi":"10.1002/2211-5463.13900","DOIUrl":null,"url":null,"abstract":"<p>SNAP25 plays an essential role in the glucose-stimulated insulin secretion (GSIS) of pancreatic β-cells. Carbohydrate response element-binding protein (ChREBP) is an important transcription factor in β-cells and, in this study, we aimed to explore whether ChREBP regulates SNAP25 expression in β-cells. We show that diabetic Goto-Kakizaki (GK) rats exhibited impaired insulin secretion and hyperglycemia, along with decreased SNAP25 expression and ChREBP phosphorylation in islets. SNAP25 knockdown decreased GSIS in β-cells, while SNAP25 overexpression increased GSIS in β-cells. Activation or overexpression of ChREBP led to reduced SNAP25 expression and subsequent suppression of GSIS. Conversely, ChREBP knockdown mitigated the reduction in SNAP25 expression caused by high glucose. Mechanistically, the activation of ChREBP by high glucose increased its occupancy and decreased the level of H3K4me3 at the <i>Snap25</i> promoter. Our findings reveal the novel regulatory mechanisms of SNAP25 expression in β-cells and suggest that SNAP25 may be involved in the regulation of β-cell secretory function controlled by ChREBP.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":"14 11","pages":"1864-1872"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/2211-5463.13900","citationCount":"0","resultStr":"{\"title\":\"Carbohydrate response element-binding protein (ChREBP) mediates decreased SNAP25 expression in islets from diabetic Goto-Kakizaki (GK) rats\",\"authors\":\"Anyi Hu, Hongyan Lan, Zilai Yao, Xiangchen Kong\",\"doi\":\"10.1002/2211-5463.13900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>SNAP25 plays an essential role in the glucose-stimulated insulin secretion (GSIS) of pancreatic β-cells. Carbohydrate response element-binding protein (ChREBP) is an important transcription factor in β-cells and, in this study, we aimed to explore whether ChREBP regulates SNAP25 expression in β-cells. We show that diabetic Goto-Kakizaki (GK) rats exhibited impaired insulin secretion and hyperglycemia, along with decreased SNAP25 expression and ChREBP phosphorylation in islets. SNAP25 knockdown decreased GSIS in β-cells, while SNAP25 overexpression increased GSIS in β-cells. Activation or overexpression of ChREBP led to reduced SNAP25 expression and subsequent suppression of GSIS. Conversely, ChREBP knockdown mitigated the reduction in SNAP25 expression caused by high glucose. Mechanistically, the activation of ChREBP by high glucose increased its occupancy and decreased the level of H3K4me3 at the <i>Snap25</i> promoter. Our findings reveal the novel regulatory mechanisms of SNAP25 expression in β-cells and suggest that SNAP25 may be involved in the regulation of β-cell secretory function controlled by ChREBP.</p>\",\"PeriodicalId\":12187,\"journal\":{\"name\":\"FEBS Open Bio\",\"volume\":\"14 11\",\"pages\":\"1864-1872\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/2211-5463.13900\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Open Bio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/2211-5463.13900\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Open Bio","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/2211-5463.13900","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Carbohydrate response element-binding protein (ChREBP) mediates decreased SNAP25 expression in islets from diabetic Goto-Kakizaki (GK) rats
SNAP25 plays an essential role in the glucose-stimulated insulin secretion (GSIS) of pancreatic β-cells. Carbohydrate response element-binding protein (ChREBP) is an important transcription factor in β-cells and, in this study, we aimed to explore whether ChREBP regulates SNAP25 expression in β-cells. We show that diabetic Goto-Kakizaki (GK) rats exhibited impaired insulin secretion and hyperglycemia, along with decreased SNAP25 expression and ChREBP phosphorylation in islets. SNAP25 knockdown decreased GSIS in β-cells, while SNAP25 overexpression increased GSIS in β-cells. Activation or overexpression of ChREBP led to reduced SNAP25 expression and subsequent suppression of GSIS. Conversely, ChREBP knockdown mitigated the reduction in SNAP25 expression caused by high glucose. Mechanistically, the activation of ChREBP by high glucose increased its occupancy and decreased the level of H3K4me3 at the Snap25 promoter. Our findings reveal the novel regulatory mechanisms of SNAP25 expression in β-cells and suggest that SNAP25 may be involved in the regulation of β-cell secretory function controlled by ChREBP.
期刊介绍:
FEBS Open Bio is an online-only open access journal for the rapid publication of research articles in molecular and cellular life sciences in both health and disease. The journal''s peer review process focuses on the technical soundness of papers, leaving the assessment of their impact and importance to the scientific community.
FEBS Open Bio is owned by the Federation of European Biochemical Societies (FEBS), a not-for-profit organization, and is published on behalf of FEBS by FEBS Press and Wiley. Any income from the journal will be used to support scientists through fellowships, courses, travel grants, prizes and other FEBS initiatives.