锅炉水冷壁管高温气态氟化氢腐蚀实验研究。

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Jigang Zhang, Zijun Liu, Kun Cheng, Lianqin Jia, Kuihua Han
{"title":"锅炉水冷壁管高温气态氟化氢腐蚀实验研究。","authors":"Jigang Zhang, Zijun Liu, Kun Cheng, Lianqin Jia, Kuihua Han","doi":"10.1080/09593330.2024.2405945","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen fluoride (HF) corrosion of boiler water-cooled wall pipes at high temperature hinders the co-disposal of fluorinated hazardous wastes and coal by combustion. In this paper, common water-cooled wall pipes (15CrMoG and 20G) were utilized to perform gaseous HF corrosion experiments at high temperature on a horizontal tube furnace. The effects of temperature on HF corrosion of different water-cooled wall pipes in 0.2% HF were investigated. Corrosion kinetics curve was obtained by calculating the mass increase due to corrosion. The microscopic morphology and physical phase composition of water-cooled wall pipes after HF corrosion were analyzed. The corrosion resistances of the two water-cooled wall pipes decrease with increasing the temperature. The corrosion weight gain curves of 15CrMoG and 20G at 550 ℃ are Δ<i>W</i><sup>1.9144 </sup>= 0.2100<i>t</i> and Δ<i>W</i><sup>1.8356 </sup>= 0.1344<i>t</i>, respectively. The average corrosion rates of 15CrMoG and 20G are 0.0177 and 0.0125 mg/(cm<sup>2</sup>·h), respectively. The corrosion resistance of 15CrMoG is superior compared to 20G. The HF corrosion at high temperature consists of non-alternating fluorination and oxidation of the metal matrix. This study is of great significance for the protection of boilers with HF corrosion at high temperature.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on high temperature gaseous hydrogen fluoride corrosion of boiler water-cooled wall pipes.\",\"authors\":\"Jigang Zhang, Zijun Liu, Kun Cheng, Lianqin Jia, Kuihua Han\",\"doi\":\"10.1080/09593330.2024.2405945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogen fluoride (HF) corrosion of boiler water-cooled wall pipes at high temperature hinders the co-disposal of fluorinated hazardous wastes and coal by combustion. In this paper, common water-cooled wall pipes (15CrMoG and 20G) were utilized to perform gaseous HF corrosion experiments at high temperature on a horizontal tube furnace. The effects of temperature on HF corrosion of different water-cooled wall pipes in 0.2% HF were investigated. Corrosion kinetics curve was obtained by calculating the mass increase due to corrosion. The microscopic morphology and physical phase composition of water-cooled wall pipes after HF corrosion were analyzed. The corrosion resistances of the two water-cooled wall pipes decrease with increasing the temperature. The corrosion weight gain curves of 15CrMoG and 20G at 550 ℃ are Δ<i>W</i><sup>1.9144 </sup>= 0.2100<i>t</i> and Δ<i>W</i><sup>1.8356 </sup>= 0.1344<i>t</i>, respectively. The average corrosion rates of 15CrMoG and 20G are 0.0177 and 0.0125 mg/(cm<sup>2</sup>·h), respectively. The corrosion resistance of 15CrMoG is superior compared to 20G. The HF corrosion at high temperature consists of non-alternating fluorination and oxidation of the metal matrix. This study is of great significance for the protection of boilers with HF corrosion at high temperature.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2405945\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2405945","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

氟化氢(HF)在高温下对锅炉水冷壁管的腐蚀阻碍了含氟危险废物和煤炭的共同燃烧处置。本文利用普通水冷壁管(15CrMoG 和 20G)在卧式管式炉上进行高温下的气态氟化氢腐蚀实验。研究了温度对不同水冷壁管在 0.2% HF 中 HF 腐蚀的影响。通过计算腐蚀导致的质量增加,得出了腐蚀动力学曲线。分析了高频腐蚀后水冷壁管的微观形貌和物相组成。两种水冷壁管的耐腐蚀性随温度升高而降低。15CrMoG 和 20G 在 550 ℃ 下的腐蚀增重曲线分别为 ΔW1.9144 = 0.2100t 和 ΔW1.8356 = 0.1344t。15CrMoG 和 20G 的平均腐蚀速率分别为 0.0177 和 0.0125 mg/(cm2-h)。15CrMoG 的耐腐蚀性优于 20G。高温下的高频腐蚀包括金属基体的非交替氟化和氧化。这项研究对保护高温下受高频腐蚀的锅炉具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on high temperature gaseous hydrogen fluoride corrosion of boiler water-cooled wall pipes.

Hydrogen fluoride (HF) corrosion of boiler water-cooled wall pipes at high temperature hinders the co-disposal of fluorinated hazardous wastes and coal by combustion. In this paper, common water-cooled wall pipes (15CrMoG and 20G) were utilized to perform gaseous HF corrosion experiments at high temperature on a horizontal tube furnace. The effects of temperature on HF corrosion of different water-cooled wall pipes in 0.2% HF were investigated. Corrosion kinetics curve was obtained by calculating the mass increase due to corrosion. The microscopic morphology and physical phase composition of water-cooled wall pipes after HF corrosion were analyzed. The corrosion resistances of the two water-cooled wall pipes decrease with increasing the temperature. The corrosion weight gain curves of 15CrMoG and 20G at 550 ℃ are ΔW1.9144 = 0.2100t and ΔW1.8356 = 0.1344t, respectively. The average corrosion rates of 15CrMoG and 20G are 0.0177 and 0.0125 mg/(cm2·h), respectively. The corrosion resistance of 15CrMoG is superior compared to 20G. The HF corrosion at high temperature consists of non-alternating fluorination and oxidation of the metal matrix. This study is of great significance for the protection of boilers with HF corrosion at high temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信