用蒙脱石在 Pebax 膜中构建高速促进传输通道,实现高效 CO2/N2 分离。

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Bing Zhang, Renying Qian, Yu Jiang, Jian Wang, Yonghong Wu
{"title":"用蒙脱石在 Pebax 膜中构建高速促进传输通道,实现高效 CO2/N2 分离。","authors":"Bing Zhang, Renying Qian, Yu Jiang, Jian Wang, Yonghong Wu","doi":"10.1080/09593330.2024.2405666","DOIUrl":null,"url":null,"abstract":"<p><p>Development of high-performance mixed matrix membranes (MMMs) is of great significance for CO<sub>2</sub> separation membrane technology, in order to improve the commercial competitiveness and practical applications. Montmorillonite (MMT) was developed as a dopant to fabricate Polyether block amide (Pebax1074)-based MMMs for strengthening the CO<sub>2</sub>/N<sub>2</sub> separation. The morphology, chemical groups, microstructure, and thermal properties of MMMs were characterised by scanning electron microscope, FTIR spectroscopy, X-ray diffraction and thermal analysis, respectively. The effects of MMT contents, permeation pressure and permeation temperature on the gas separation performance of the Pebax/MMT MMMs were investigated. The results show that the uniformly dispersed dopants MMT in the membrane matrix significantly influence the thermal stability and the structural compactness of MMMs. Moreover, the CO<sub>2</sub> permeability monotonously increases in spite of the CO<sub>2</sub>/N<sub>2</sub> selectivity first increasing and then decreasing with the MMT content elevating from 0% to 10% in MMMs. The highest CO<sub>2</sub>/N<sub>2</sub> selectivity could reach to 120.3, along with the CO<sub>2</sub> permeability of 130.6 Barrer for the MMMs made by MMT content of 6%.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building high-speed facilitated transport channels in Pebax membranes with montmorillonite for efficient CO<sub>2</sub>/N<sub>2</sub> separation.\",\"authors\":\"Bing Zhang, Renying Qian, Yu Jiang, Jian Wang, Yonghong Wu\",\"doi\":\"10.1080/09593330.2024.2405666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Development of high-performance mixed matrix membranes (MMMs) is of great significance for CO<sub>2</sub> separation membrane technology, in order to improve the commercial competitiveness and practical applications. Montmorillonite (MMT) was developed as a dopant to fabricate Polyether block amide (Pebax1074)-based MMMs for strengthening the CO<sub>2</sub>/N<sub>2</sub> separation. The morphology, chemical groups, microstructure, and thermal properties of MMMs were characterised by scanning electron microscope, FTIR spectroscopy, X-ray diffraction and thermal analysis, respectively. The effects of MMT contents, permeation pressure and permeation temperature on the gas separation performance of the Pebax/MMT MMMs were investigated. The results show that the uniformly dispersed dopants MMT in the membrane matrix significantly influence the thermal stability and the structural compactness of MMMs. Moreover, the CO<sub>2</sub> permeability monotonously increases in spite of the CO<sub>2</sub>/N<sub>2</sub> selectivity first increasing and then decreasing with the MMT content elevating from 0% to 10% in MMMs. The highest CO<sub>2</sub>/N<sub>2</sub> selectivity could reach to 120.3, along with the CO<sub>2</sub> permeability of 130.6 Barrer for the MMMs made by MMT content of 6%.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2405666\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2405666","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

开发高性能混合基质膜(MMMs)对二氧化碳分离膜技术具有重要意义,有助于提高其商业竞争力和实际应用。研究人员开发了蒙脱石(MMT)作为掺杂剂,用于制造聚醚嵌段酰胺(Pebax1074)基 MMM,以加强 CO2/N2 分离。分别通过扫描电子显微镜、傅立叶变换红外光谱、X 射线衍射和热分析对 MMM 的形貌、化学基团、微观结构和热性能进行了表征。研究了 MMT 含量、渗透压力和渗透温度对 Pebax/MMT MMMs 气体分离性能的影响。结果表明,膜基体中均匀分散的掺杂剂 MMT 对 MMMs 的热稳定性和结构致密性有显著影响。此外,随着 MMMs 中 MMT 含量从 0% 增加到 10%,尽管 CO2/N2 选择性先增加后降低,但 CO2 渗透率却在单调地增加。在 MMT 含量为 6% 的 MMMs 中,二氧化碳/N2 选择性最高可达 120.3,二氧化碳渗透率为 130.6 巴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building high-speed facilitated transport channels in Pebax membranes with montmorillonite for efficient CO2/N2 separation.

Development of high-performance mixed matrix membranes (MMMs) is of great significance for CO2 separation membrane technology, in order to improve the commercial competitiveness and practical applications. Montmorillonite (MMT) was developed as a dopant to fabricate Polyether block amide (Pebax1074)-based MMMs for strengthening the CO2/N2 separation. The morphology, chemical groups, microstructure, and thermal properties of MMMs were characterised by scanning electron microscope, FTIR spectroscopy, X-ray diffraction and thermal analysis, respectively. The effects of MMT contents, permeation pressure and permeation temperature on the gas separation performance of the Pebax/MMT MMMs were investigated. The results show that the uniformly dispersed dopants MMT in the membrane matrix significantly influence the thermal stability and the structural compactness of MMMs. Moreover, the CO2 permeability monotonously increases in spite of the CO2/N2 selectivity first increasing and then decreasing with the MMT content elevating from 0% to 10% in MMMs. The highest CO2/N2 selectivity could reach to 120.3, along with the CO2 permeability of 130.6 Barrer for the MMMs made by MMT content of 6%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信