Christa E Nath, Sebastian P A Rosser, Kiran K Nath, Jason Chung, Stephen Larsen, John Gibson, Melissa Gabriel, Peter J Shaw, Steven J Keogh
{"title":"接受同种异体造血干细胞移植调理的儿童和成人患者的年龄和肾功能对氟达拉宾的药代动力学和蛋白结合特性的影响。","authors":"Christa E Nath, Sebastian P A Rosser, Kiran K Nath, Jason Chung, Stephen Larsen, John Gibson, Melissa Gabriel, Peter J Shaw, Steven J Keogh","doi":"10.1007/s00228-024-03751-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To evaluate the population pharmacokinetics of unbound F-Ara-A (the circulating metabolite of fludarabine) in 211 patients (age range, 0.1-63.4 years) undergoing allogeneic haematopoietic stem cell transplantation conditioning.</p><p><strong>Methods: </strong>Total (n = 2480) and unbound (n = 1403) F-Ara-A concentrations were measured in blood samples collected at timed intervals after fludarabine doses ranging from 10 to 50 mg/m<sup>2</sup> and infused over 0.42-1.5 h. A three-compartment population pharmacokinetic model was developed based on unbound plasma concentrations and used to estimate F-Ara-A unbound pharmacokinetic parameters and fraction unbound (fu). A number of covariates, including glomerular filtration rate (GFR) and post-menstrual age (PMA), were evaluated for inclusion in the model.</p><p><strong>Results: </strong>The base population mean estimates ± relative standard error (%RSE) for unbound clearance from the central compartment (CLu) and inter-compartmental clearances (Q2u, Q3u) were 3.42 ± 3%, 6.54 ± 24% and 1.47 ± 16% L/h/70 kg, respectively. The population mean estimates (%RSE) for the unbound volume of distribution into the central (V1u) and peripheral compartments (V2u, V3u) were 9.65 ± 8%, 8.17 ± 9% and 16.4 ± 10% L/70 kg, respectively, and that for fu was 0.877 ± 1%. Covariate model development involved differentiating F-Ara-A CLu into non-renal (1.81 ± 9% L/h/70 kg) and renal components (1.02 ± 9%*GFR L/h/70 kg). A sigmoidal maturation factor was applied to renal CLu, with population mean estimates for the Hill exponent and PMA at 50% mature of 2.97 ± 4% and 69.1 ± 8% weeks, respectively.</p><p><strong>Conclusion: </strong>Patient age and GFR are predictors of unbound F-Ara-A CLu. This has the potential to impact dose requirements. Dose individualisation by target concentration intervention will be facilitated by this model once it is externally validated.</p>","PeriodicalId":11857,"journal":{"name":"European Journal of Clinical Pharmacology","volume":" ","pages":"1967-1987"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557628/pdf/","citationCount":"0","resultStr":"{\"title\":\"The impact of age and renal function on the pharmacokinetics and protein binding characteristics of fludarabine in paediatric and adult patients undergoing allogeneic haematopoietic stem cell transplantation conditioning.\",\"authors\":\"Christa E Nath, Sebastian P A Rosser, Kiran K Nath, Jason Chung, Stephen Larsen, John Gibson, Melissa Gabriel, Peter J Shaw, Steven J Keogh\",\"doi\":\"10.1007/s00228-024-03751-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>To evaluate the population pharmacokinetics of unbound F-Ara-A (the circulating metabolite of fludarabine) in 211 patients (age range, 0.1-63.4 years) undergoing allogeneic haematopoietic stem cell transplantation conditioning.</p><p><strong>Methods: </strong>Total (n = 2480) and unbound (n = 1403) F-Ara-A concentrations were measured in blood samples collected at timed intervals after fludarabine doses ranging from 10 to 50 mg/m<sup>2</sup> and infused over 0.42-1.5 h. A three-compartment population pharmacokinetic model was developed based on unbound plasma concentrations and used to estimate F-Ara-A unbound pharmacokinetic parameters and fraction unbound (fu). A number of covariates, including glomerular filtration rate (GFR) and post-menstrual age (PMA), were evaluated for inclusion in the model.</p><p><strong>Results: </strong>The base population mean estimates ± relative standard error (%RSE) for unbound clearance from the central compartment (CLu) and inter-compartmental clearances (Q2u, Q3u) were 3.42 ± 3%, 6.54 ± 24% and 1.47 ± 16% L/h/70 kg, respectively. The population mean estimates (%RSE) for the unbound volume of distribution into the central (V1u) and peripheral compartments (V2u, V3u) were 9.65 ± 8%, 8.17 ± 9% and 16.4 ± 10% L/70 kg, respectively, and that for fu was 0.877 ± 1%. Covariate model development involved differentiating F-Ara-A CLu into non-renal (1.81 ± 9% L/h/70 kg) and renal components (1.02 ± 9%*GFR L/h/70 kg). A sigmoidal maturation factor was applied to renal CLu, with population mean estimates for the Hill exponent and PMA at 50% mature of 2.97 ± 4% and 69.1 ± 8% weeks, respectively.</p><p><strong>Conclusion: </strong>Patient age and GFR are predictors of unbound F-Ara-A CLu. This has the potential to impact dose requirements. Dose individualisation by target concentration intervention will be facilitated by this model once it is externally validated.</p>\",\"PeriodicalId\":11857,\"journal\":{\"name\":\"European Journal of Clinical Pharmacology\",\"volume\":\" \",\"pages\":\"1967-1987\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557628/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Clinical Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00228-024-03751-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Clinical Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00228-024-03751-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The impact of age and renal function on the pharmacokinetics and protein binding characteristics of fludarabine in paediatric and adult patients undergoing allogeneic haematopoietic stem cell transplantation conditioning.
Aim: To evaluate the population pharmacokinetics of unbound F-Ara-A (the circulating metabolite of fludarabine) in 211 patients (age range, 0.1-63.4 years) undergoing allogeneic haematopoietic stem cell transplantation conditioning.
Methods: Total (n = 2480) and unbound (n = 1403) F-Ara-A concentrations were measured in blood samples collected at timed intervals after fludarabine doses ranging from 10 to 50 mg/m2 and infused over 0.42-1.5 h. A three-compartment population pharmacokinetic model was developed based on unbound plasma concentrations and used to estimate F-Ara-A unbound pharmacokinetic parameters and fraction unbound (fu). A number of covariates, including glomerular filtration rate (GFR) and post-menstrual age (PMA), were evaluated for inclusion in the model.
Results: The base population mean estimates ± relative standard error (%RSE) for unbound clearance from the central compartment (CLu) and inter-compartmental clearances (Q2u, Q3u) were 3.42 ± 3%, 6.54 ± 24% and 1.47 ± 16% L/h/70 kg, respectively. The population mean estimates (%RSE) for the unbound volume of distribution into the central (V1u) and peripheral compartments (V2u, V3u) were 9.65 ± 8%, 8.17 ± 9% and 16.4 ± 10% L/70 kg, respectively, and that for fu was 0.877 ± 1%. Covariate model development involved differentiating F-Ara-A CLu into non-renal (1.81 ± 9% L/h/70 kg) and renal components (1.02 ± 9%*GFR L/h/70 kg). A sigmoidal maturation factor was applied to renal CLu, with population mean estimates for the Hill exponent and PMA at 50% mature of 2.97 ± 4% and 69.1 ± 8% weeks, respectively.
Conclusion: Patient age and GFR are predictors of unbound F-Ara-A CLu. This has the potential to impact dose requirements. Dose individualisation by target concentration intervention will be facilitated by this model once it is externally validated.
期刊介绍:
The European Journal of Clinical Pharmacology publishes original papers on all aspects of clinical pharmacology and drug therapy in humans. Manuscripts are welcomed on the following topics: therapeutic trials, pharmacokinetics/pharmacodynamics, pharmacogenetics, drug metabolism, adverse drug reactions, drug interactions, all aspects of drug development, development relating to teaching in clinical pharmacology, pharmacoepidemiology, and matters relating to the rational prescribing and safe use of drugs. Methodological contributions relevant to these topics are also welcomed.
Data from animal experiments are accepted only in the context of original data in man reported in the same paper. EJCP will only consider manuscripts describing the frequency of allelic variants in different populations if this information is linked to functional data or new interesting variants. Highly relevant differences in frequency with a major impact in drug therapy for the respective population may be submitted as a letter to the editor.
Straightforward phase I pharmacokinetic or pharmacodynamic studies as parts of new drug development will only be considered for publication if the paper involves
-a compound that is interesting and new in some basic or fundamental way, or
-methods that are original in some basic sense, or
-a highly unexpected outcome, or
-conclusions that are scientifically novel in some basic or fundamental sense.