Sudeshna Tripathy, Anusha Nagari, Shu-Ping Chiu, Tulip Nandu, Cristel V Camacho, Mala Mahendroo, W Lee Kraus
{"title":"松弛素调节子宫肌瘤中雌激素的基因组作用和生物效应","authors":"Sudeshna Tripathy, Anusha Nagari, Shu-Ping Chiu, Tulip Nandu, Cristel V Camacho, Mala Mahendroo, W Lee Kraus","doi":"10.1210/endocr/bqae123","DOIUrl":null,"url":null,"abstract":"<p><p>Estradiol (E2) and relaxin (Rln) are steroid and polypeptide hormones, respectively, with important roles in the female reproductive tract, including myometrium. Some actions of Rln, which are mediated by its membrane receptor RXFP1, require or are augmented by E2 signaling through its cognate nuclear steroid receptor, estrogen receptor alpha (ERα). In contrast, other actions of Rln act in opposition to the effects of E2. Here we explored the molecular and genomic mechanisms that underlie the functional interplay between E2 and Rln in the myometrium. We used both ovariectomized female mice and immortalized human myometrial cells expressing wild-type or mutant ERα (hTERT-HM-ERα cells). Our results indicate that Rln modulates the genomic actions and biological effects of estrogen in the myometrium and myometrial cells by reducing phosphorylation of ERα on serine 118 (S118), as well as by reducing the E2-dependent binding of ERα across the genome. These effects were associated with changes in the hormone-regulated transcriptome, including a decrease in the E2-dependent expression of some genes and enhanced expression of others. The inhibitory effects of Rln cotreatment on the E2-dependent phosphorylation of ERα required the nuclear dual-specificity phosphatases DUSP1 and DUSP5. Moreover, the inhibitory effects of Rln were reflected in a concomitant inhibition of the E2-dependent contraction of myometrial cells. Collectively, our results identify a pathway that integrates Rln/RXFP1 and E2/ERα signaling, resulting in a convergence of membrane and nuclear signaling pathways to control genomic and biological outcomes.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462454/pdf/","citationCount":"0","resultStr":"{\"title\":\"Relaxin Modulates the Genomic Actions and Biological Effects of Estrogen in the Myometrium.\",\"authors\":\"Sudeshna Tripathy, Anusha Nagari, Shu-Ping Chiu, Tulip Nandu, Cristel V Camacho, Mala Mahendroo, W Lee Kraus\",\"doi\":\"10.1210/endocr/bqae123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estradiol (E2) and relaxin (Rln) are steroid and polypeptide hormones, respectively, with important roles in the female reproductive tract, including myometrium. Some actions of Rln, which are mediated by its membrane receptor RXFP1, require or are augmented by E2 signaling through its cognate nuclear steroid receptor, estrogen receptor alpha (ERα). In contrast, other actions of Rln act in opposition to the effects of E2. Here we explored the molecular and genomic mechanisms that underlie the functional interplay between E2 and Rln in the myometrium. We used both ovariectomized female mice and immortalized human myometrial cells expressing wild-type or mutant ERα (hTERT-HM-ERα cells). Our results indicate that Rln modulates the genomic actions and biological effects of estrogen in the myometrium and myometrial cells by reducing phosphorylation of ERα on serine 118 (S118), as well as by reducing the E2-dependent binding of ERα across the genome. These effects were associated with changes in the hormone-regulated transcriptome, including a decrease in the E2-dependent expression of some genes and enhanced expression of others. The inhibitory effects of Rln cotreatment on the E2-dependent phosphorylation of ERα required the nuclear dual-specificity phosphatases DUSP1 and DUSP5. Moreover, the inhibitory effects of Rln were reflected in a concomitant inhibition of the E2-dependent contraction of myometrial cells. Collectively, our results identify a pathway that integrates Rln/RXFP1 and E2/ERα signaling, resulting in a convergence of membrane and nuclear signaling pathways to control genomic and biological outcomes.</p>\",\"PeriodicalId\":11819,\"journal\":{\"name\":\"Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462454/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1210/endocr/bqae123\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqae123","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Relaxin Modulates the Genomic Actions and Biological Effects of Estrogen in the Myometrium.
Estradiol (E2) and relaxin (Rln) are steroid and polypeptide hormones, respectively, with important roles in the female reproductive tract, including myometrium. Some actions of Rln, which are mediated by its membrane receptor RXFP1, require or are augmented by E2 signaling through its cognate nuclear steroid receptor, estrogen receptor alpha (ERα). In contrast, other actions of Rln act in opposition to the effects of E2. Here we explored the molecular and genomic mechanisms that underlie the functional interplay between E2 and Rln in the myometrium. We used both ovariectomized female mice and immortalized human myometrial cells expressing wild-type or mutant ERα (hTERT-HM-ERα cells). Our results indicate that Rln modulates the genomic actions and biological effects of estrogen in the myometrium and myometrial cells by reducing phosphorylation of ERα on serine 118 (S118), as well as by reducing the E2-dependent binding of ERα across the genome. These effects were associated with changes in the hormone-regulated transcriptome, including a decrease in the E2-dependent expression of some genes and enhanced expression of others. The inhibitory effects of Rln cotreatment on the E2-dependent phosphorylation of ERα required the nuclear dual-specificity phosphatases DUSP1 and DUSP5. Moreover, the inhibitory effects of Rln were reflected in a concomitant inhibition of the E2-dependent contraction of myometrial cells. Collectively, our results identify a pathway that integrates Rln/RXFP1 and E2/ERα signaling, resulting in a convergence of membrane and nuclear signaling pathways to control genomic and biological outcomes.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.