Trinh T T Tran, Cao Dai Phung, Brendon Z J Yeo, Rebecca C Prajogo, Migara K Jayasinghe, Ju Yuan, Daniel S W Tan, Eric Y M Yeo, Boon Cher Goh, Wai Leong Tam, Minh T N Le
{"title":"针对表皮生长因子受体驱动突变体的反义寡核苷酸定制设计,用于非小细胞肺癌的个性化治疗。","authors":"Trinh T T Tran, Cao Dai Phung, Brendon Z J Yeo, Rebecca C Prajogo, Migara K Jayasinghe, Ju Yuan, Daniel S W Tan, Eric Y M Yeo, Boon Cher Goh, Wai Leong Tam, Minh T N Le","doi":"10.1016/j.ebiom.2024.105356","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tyrosine kinase inhibitors (TKIs) are currently the standard therapy for patients with non-small cell lung cancer (NSCLC) bearing mutations in epidermal growth factor receptor (EGFR). Unfortunately, drug-acquired resistance is inevitable due to the emergence of new mutations in EGFR. Moreover, the TKI treatment is associated with severe toxicities due to the unspecific inhibition of wild-type (WT) EGFR. Thus, treatment that is customised to an individual's genetic alterations in EGFR may offer greater therapeutic benefits for patients with NSCLC.</p><p><strong>Methods: </strong>In this study, we demonstrate a new therapeutic strategy utilising customised antisense oligonucleotides (ASOs) to selectively target activating mutations in the EGFR gene in an individualised manner that can overcome drug-resistant mutations. We use extracellular vesicles (EVs) as a vehicle to deliver ASOs to NSCLC cells.</p><p><strong>Findings: </strong>Specifically guided by the mutational profile identified in NSCLC patients, we have successfully developed ASOs that selectively inhibit point mutations in the EGFR gene, including L858R and T790M, while sparing the WT EGFR. Delivery of the EGFR-targeting ASOs by EVs significantly reduced tumour growth in xenograft models of EGFR-L858R/T790M-driven NSCLC. Importantly, we have also shown that EGFR-targeting ASOs exhibit more potent anti-cancer effect than TKIs in NSCLC with EGFR mutations, effectively suppressing a patient-derived TKI-resistant NSCLC tumour.</p><p><strong>Interpretation: </strong>Overall, by harnessing the specificity and efficacy of ASOs, we present an effective and adaptable therapeutic platform for NSCLC treatment.</p><p><strong>Funding: </strong>This study was funded by Singapore's Ministry of Health (NMRC/OFIRG/MOH-000643-00, OFIRG21nov-0068, NMRC/OFLCG/002-2018, OFYIRG22jul-0034), National Research Foundation (NRF-NRFI08-2022, NRF-CRP22-2019-0003, NRF-CRP23-2019-0004), A∗STAR, and Ministry of Education.</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"108 ","pages":"105356"},"PeriodicalIF":9.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437961/pdf/","citationCount":"0","resultStr":"{\"title\":\"Customised design of antisense oligonucleotides targeting EGFR driver mutants for personalised treatment of non-small cell lung cancer.\",\"authors\":\"Trinh T T Tran, Cao Dai Phung, Brendon Z J Yeo, Rebecca C Prajogo, Migara K Jayasinghe, Ju Yuan, Daniel S W Tan, Eric Y M Yeo, Boon Cher Goh, Wai Leong Tam, Minh T N Le\",\"doi\":\"10.1016/j.ebiom.2024.105356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Tyrosine kinase inhibitors (TKIs) are currently the standard therapy for patients with non-small cell lung cancer (NSCLC) bearing mutations in epidermal growth factor receptor (EGFR). Unfortunately, drug-acquired resistance is inevitable due to the emergence of new mutations in EGFR. Moreover, the TKI treatment is associated with severe toxicities due to the unspecific inhibition of wild-type (WT) EGFR. Thus, treatment that is customised to an individual's genetic alterations in EGFR may offer greater therapeutic benefits for patients with NSCLC.</p><p><strong>Methods: </strong>In this study, we demonstrate a new therapeutic strategy utilising customised antisense oligonucleotides (ASOs) to selectively target activating mutations in the EGFR gene in an individualised manner that can overcome drug-resistant mutations. We use extracellular vesicles (EVs) as a vehicle to deliver ASOs to NSCLC cells.</p><p><strong>Findings: </strong>Specifically guided by the mutational profile identified in NSCLC patients, we have successfully developed ASOs that selectively inhibit point mutations in the EGFR gene, including L858R and T790M, while sparing the WT EGFR. Delivery of the EGFR-targeting ASOs by EVs significantly reduced tumour growth in xenograft models of EGFR-L858R/T790M-driven NSCLC. Importantly, we have also shown that EGFR-targeting ASOs exhibit more potent anti-cancer effect than TKIs in NSCLC with EGFR mutations, effectively suppressing a patient-derived TKI-resistant NSCLC tumour.</p><p><strong>Interpretation: </strong>Overall, by harnessing the specificity and efficacy of ASOs, we present an effective and adaptable therapeutic platform for NSCLC treatment.</p><p><strong>Funding: </strong>This study was funded by Singapore's Ministry of Health (NMRC/OFIRG/MOH-000643-00, OFIRG21nov-0068, NMRC/OFLCG/002-2018, OFYIRG22jul-0034), National Research Foundation (NRF-NRFI08-2022, NRF-CRP22-2019-0003, NRF-CRP23-2019-0004), A∗STAR, and Ministry of Education.</p>\",\"PeriodicalId\":11494,\"journal\":{\"name\":\"EBioMedicine\",\"volume\":\"108 \",\"pages\":\"105356\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437961/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EBioMedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ebiom.2024.105356\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2024.105356","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Customised design of antisense oligonucleotides targeting EGFR driver mutants for personalised treatment of non-small cell lung cancer.
Background: Tyrosine kinase inhibitors (TKIs) are currently the standard therapy for patients with non-small cell lung cancer (NSCLC) bearing mutations in epidermal growth factor receptor (EGFR). Unfortunately, drug-acquired resistance is inevitable due to the emergence of new mutations in EGFR. Moreover, the TKI treatment is associated with severe toxicities due to the unspecific inhibition of wild-type (WT) EGFR. Thus, treatment that is customised to an individual's genetic alterations in EGFR may offer greater therapeutic benefits for patients with NSCLC.
Methods: In this study, we demonstrate a new therapeutic strategy utilising customised antisense oligonucleotides (ASOs) to selectively target activating mutations in the EGFR gene in an individualised manner that can overcome drug-resistant mutations. We use extracellular vesicles (EVs) as a vehicle to deliver ASOs to NSCLC cells.
Findings: Specifically guided by the mutational profile identified in NSCLC patients, we have successfully developed ASOs that selectively inhibit point mutations in the EGFR gene, including L858R and T790M, while sparing the WT EGFR. Delivery of the EGFR-targeting ASOs by EVs significantly reduced tumour growth in xenograft models of EGFR-L858R/T790M-driven NSCLC. Importantly, we have also shown that EGFR-targeting ASOs exhibit more potent anti-cancer effect than TKIs in NSCLC with EGFR mutations, effectively suppressing a patient-derived TKI-resistant NSCLC tumour.
Interpretation: Overall, by harnessing the specificity and efficacy of ASOs, we present an effective and adaptable therapeutic platform for NSCLC treatment.
Funding: This study was funded by Singapore's Ministry of Health (NMRC/OFIRG/MOH-000643-00, OFIRG21nov-0068, NMRC/OFLCG/002-2018, OFYIRG22jul-0034), National Research Foundation (NRF-NRFI08-2022, NRF-CRP22-2019-0003, NRF-CRP23-2019-0004), A∗STAR, and Ministry of Education.
EBioMedicineBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍:
eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.