Bożena Szermer-Olearnik, Karolina Filik-Matyjaszczyk, Jarosław Ciekot, Anna Czarny
{"title":"铜绿假单胞菌噬菌体 F8 的疏水稳定性及改良噬菌体制备对生物膜降解的影响","authors":"Bożena Szermer-Olearnik, Karolina Filik-Matyjaszczyk, Jarosław Ciekot, Anna Czarny","doi":"10.1007/s00284-024-03896-2","DOIUrl":null,"url":null,"abstract":"<p><p>The bacteriophage F8 belongs to the Myoviridae group of phages and is a pathogen of Pseudomonas aeruginosa. Since Pseudomonas aeruginosa is a multidrug-resistant opportunistic bacterium and can cause serious challenges for health services, studying the potential use of phages against them is a promising approach. Pseudomonas aeruginosa can be found on medical devices because bacteria can attach to surfaces and develop biofilms, which are difficult to eradicate because of their high resistance to environmental conditions and antimicrobial therapeutics. Phage therapy is becoming promising as an alternative for the treatment of antibiotic-resistant infections, but there is still a lack of standardized protocols approved by health organizations for possible use in the clinic. In our research, we focused on the potential use of 1-octanol, which was previously used by our team to develop a method for phage purification from bacterial lysate. 1-octanol is a fatty alcohol that is mostly used in the cosmetics industry, and its advantage is that it is approved by the FDA as a food additive. In this paper, we studied the protective properties of the addition of 1-octanol for storing phage liquid preparations. We demonstrated the stabilization effect of 1-octanol addition on F8 bacteriophage preparation during storage under various conditions. Interestingly, more effective biofilm reduction was observed after treatment with the purified bacteriophage and with 1-octanol addition compared to crude lysate.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417074/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Hydrophobic Stabilization of Pseudomonas aeruginosa Bacteriophage F8 and the Influence of Modified Bacteriophage Preparation on Biofilm Degradation.\",\"authors\":\"Bożena Szermer-Olearnik, Karolina Filik-Matyjaszczyk, Jarosław Ciekot, Anna Czarny\",\"doi\":\"10.1007/s00284-024-03896-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The bacteriophage F8 belongs to the Myoviridae group of phages and is a pathogen of Pseudomonas aeruginosa. Since Pseudomonas aeruginosa is a multidrug-resistant opportunistic bacterium and can cause serious challenges for health services, studying the potential use of phages against them is a promising approach. Pseudomonas aeruginosa can be found on medical devices because bacteria can attach to surfaces and develop biofilms, which are difficult to eradicate because of their high resistance to environmental conditions and antimicrobial therapeutics. Phage therapy is becoming promising as an alternative for the treatment of antibiotic-resistant infections, but there is still a lack of standardized protocols approved by health organizations for possible use in the clinic. In our research, we focused on the potential use of 1-octanol, which was previously used by our team to develop a method for phage purification from bacterial lysate. 1-octanol is a fatty alcohol that is mostly used in the cosmetics industry, and its advantage is that it is approved by the FDA as a food additive. In this paper, we studied the protective properties of the addition of 1-octanol for storing phage liquid preparations. We demonstrated the stabilization effect of 1-octanol addition on F8 bacteriophage preparation during storage under various conditions. Interestingly, more effective biofilm reduction was observed after treatment with the purified bacteriophage and with 1-octanol addition compared to crude lysate.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417074/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00284-024-03896-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-03896-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
The Hydrophobic Stabilization of Pseudomonas aeruginosa Bacteriophage F8 and the Influence of Modified Bacteriophage Preparation on Biofilm Degradation.
The bacteriophage F8 belongs to the Myoviridae group of phages and is a pathogen of Pseudomonas aeruginosa. Since Pseudomonas aeruginosa is a multidrug-resistant opportunistic bacterium and can cause serious challenges for health services, studying the potential use of phages against them is a promising approach. Pseudomonas aeruginosa can be found on medical devices because bacteria can attach to surfaces and develop biofilms, which are difficult to eradicate because of their high resistance to environmental conditions and antimicrobial therapeutics. Phage therapy is becoming promising as an alternative for the treatment of antibiotic-resistant infections, but there is still a lack of standardized protocols approved by health organizations for possible use in the clinic. In our research, we focused on the potential use of 1-octanol, which was previously used by our team to develop a method for phage purification from bacterial lysate. 1-octanol is a fatty alcohol that is mostly used in the cosmetics industry, and its advantage is that it is approved by the FDA as a food additive. In this paper, we studied the protective properties of the addition of 1-octanol for storing phage liquid preparations. We demonstrated the stabilization effect of 1-octanol addition on F8 bacteriophage preparation during storage under various conditions. Interestingly, more effective biofilm reduction was observed after treatment with the purified bacteriophage and with 1-octanol addition compared to crude lysate.