{"title":"利用高分辨率熔融曲线分析检测 CCR5 Delta-32 突变:挑战与事实。","authors":"Seyed Jalal Kiani, Tahereh Donyavi, Farah Bokharaei-Salim","doi":"10.2174/011570162X326491240906064322","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The C-C chemokine receptor type 5 (CCR5) is a major co-receptor for human immunodeficiency virus (HIV). Some individuals carry the CCR5 delta-32 genetic polymorphism. People with homozygous CCR5 delta-32 gene are nearly completely resistant to HIV-1 infection. High-resolution melting curve (HRM) analysis is a post-PCR technique utilized for identifying genetic variations in a quick, affordable, and closed-tube assay. The objective of this study was to develop an HRM assay for easy detection of delta-32 mutations.</p><p><strong>Materials and methods: </strong>DNA was extracted from peripheral blood mononuclear cells. HRM was performed to detect delta-32 mutation. The study investigated the impact of various factors, including annealing temperature, template concentration, touchdown PCR, additives, amplicon size, and program settings, on HRM Tm differentiation.</p><p><strong>Results: </strong>It was expected that there would be a 4°C Tm difference between amplicons with and without delta-32 mutation, but the test showed a difference of only 2.3°C. In attempts to identify heterozygote delta-32 variants, a Tm difference of only 0.4°C could be achieved. Various modifications were applied, such as adjusting the template concentration, using touchdown PCR, and adding DMSO and glycerol. However, none of these changes helped to differentiate the Tm effectively, especially in delta-32 heterozygote samples.</p><p><strong>Conclusion: </strong>The HRM test identified four samples with heterozygote mutations in each HIV-infected (8.89%) and control (5.72%) groups. More importantly, this study showed that identifying the delta-32 mutation of the CCR5 gene using HRM assay is not as straightforward as previously suggested in some literature, and it requires special setup conditions.</p>","PeriodicalId":10911,"journal":{"name":"Current HIV Research","volume":" ","pages":"368-373"},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection Of CCR5 Delta-32 Mutation Using High-Resolution Melting Curve Analysis: Challenges and Facts.\",\"authors\":\"Seyed Jalal Kiani, Tahereh Donyavi, Farah Bokharaei-Salim\",\"doi\":\"10.2174/011570162X326491240906064322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The C-C chemokine receptor type 5 (CCR5) is a major co-receptor for human immunodeficiency virus (HIV). Some individuals carry the CCR5 delta-32 genetic polymorphism. People with homozygous CCR5 delta-32 gene are nearly completely resistant to HIV-1 infection. High-resolution melting curve (HRM) analysis is a post-PCR technique utilized for identifying genetic variations in a quick, affordable, and closed-tube assay. The objective of this study was to develop an HRM assay for easy detection of delta-32 mutations.</p><p><strong>Materials and methods: </strong>DNA was extracted from peripheral blood mononuclear cells. HRM was performed to detect delta-32 mutation. The study investigated the impact of various factors, including annealing temperature, template concentration, touchdown PCR, additives, amplicon size, and program settings, on HRM Tm differentiation.</p><p><strong>Results: </strong>It was expected that there would be a 4°C Tm difference between amplicons with and without delta-32 mutation, but the test showed a difference of only 2.3°C. In attempts to identify heterozygote delta-32 variants, a Tm difference of only 0.4°C could be achieved. Various modifications were applied, such as adjusting the template concentration, using touchdown PCR, and adding DMSO and glycerol. However, none of these changes helped to differentiate the Tm effectively, especially in delta-32 heterozygote samples.</p><p><strong>Conclusion: </strong>The HRM test identified four samples with heterozygote mutations in each HIV-infected (8.89%) and control (5.72%) groups. More importantly, this study showed that identifying the delta-32 mutation of the CCR5 gene using HRM assay is not as straightforward as previously suggested in some literature, and it requires special setup conditions.</p>\",\"PeriodicalId\":10911,\"journal\":{\"name\":\"Current HIV Research\",\"volume\":\" \",\"pages\":\"368-373\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current HIV Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/011570162X326491240906064322\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current HIV Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/011570162X326491240906064322","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Detection Of CCR5 Delta-32 Mutation Using High-Resolution Melting Curve Analysis: Challenges and Facts.
Introduction: The C-C chemokine receptor type 5 (CCR5) is a major co-receptor for human immunodeficiency virus (HIV). Some individuals carry the CCR5 delta-32 genetic polymorphism. People with homozygous CCR5 delta-32 gene are nearly completely resistant to HIV-1 infection. High-resolution melting curve (HRM) analysis is a post-PCR technique utilized for identifying genetic variations in a quick, affordable, and closed-tube assay. The objective of this study was to develop an HRM assay for easy detection of delta-32 mutations.
Materials and methods: DNA was extracted from peripheral blood mononuclear cells. HRM was performed to detect delta-32 mutation. The study investigated the impact of various factors, including annealing temperature, template concentration, touchdown PCR, additives, amplicon size, and program settings, on HRM Tm differentiation.
Results: It was expected that there would be a 4°C Tm difference between amplicons with and without delta-32 mutation, but the test showed a difference of only 2.3°C. In attempts to identify heterozygote delta-32 variants, a Tm difference of only 0.4°C could be achieved. Various modifications were applied, such as adjusting the template concentration, using touchdown PCR, and adding DMSO and glycerol. However, none of these changes helped to differentiate the Tm effectively, especially in delta-32 heterozygote samples.
Conclusion: The HRM test identified four samples with heterozygote mutations in each HIV-infected (8.89%) and control (5.72%) groups. More importantly, this study showed that identifying the delta-32 mutation of the CCR5 gene using HRM assay is not as straightforward as previously suggested in some literature, and it requires special setup conditions.
期刊介绍:
Current HIV Research covers all the latest and outstanding developments of HIV research by publishing original research, review articles and guest edited thematic issues. The novel pioneering work in the basic and clinical fields on all areas of HIV research covers: virus replication and gene expression, HIV assembly, virus-cell interaction, viral pathogenesis, epidemiology and transmission, anti-retroviral therapy and adherence, drug discovery, the latest developments in HIV/AIDS vaccines and animal models, mechanisms and interactions with AIDS related diseases, social and public health issues related to HIV disease, and prevention of viral infection. Periodically, the journal invites guest editors to devote an issue on a particular area of HIV research of great interest that increases our understanding of the virus and its complex interaction with the host.