{"title":"石斛碱通过调节肺癌中的 PD-1/PD-L1 检查点通路抑制肿瘤生长","authors":"Linmao Li, Jiejin Nong, Jingui Li, Lini Fang, Meini Pan, Haixian Qiu, Shiqing Huang, Yepeng Li, Meijuan Wei, Haiying Yin","doi":"10.2174/0115680096305416240820040314","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dendrobine is a bioactive alkaloid isolated from Dendrobium nobile. Studies have evaluated the anti-tumor effect of dendrobine in cancers, including lung cancer. However, the mechanism of dendrobine inhibiting tumors requires further study.</p><p><strong>Methods: </strong>Bioinformatics was performed to screen the potential targets of dendrobine. The in-tersection of dendrobine and lung cancer targets was performed for KEGG analysis. CCK-8 was used to detect cell viability after dendrobine treatment. A xenograft mouse model was es-tablished to explore the effect of dendrobine on lung cancer. The percentages of PD-L1+, CD4+, CD8+, CD11b+, CD25+FOXP3+ cells, the expression of Ki-67 and caspase-3, the ex-pression of pathway-related proteins, the levels of IL-2, IFN-γ, and TGF-β, and the changes of indicators of liver and renal function were measured.</p><p><strong>Results: </strong>Dendrobine regulated the PD1/PD-L1 checkpoint signaling pathway and affected the occurrence and development of lung cancer. Dendrobine decreased the cell viability of lung cancer. Dendrobine and anti-PD-L1 decreased tumor growth, increased caspase-3 expression, and reduced Ki-67 expression in tumor tissues. Dendrobine and anti-PD-L1 suppressed pro-tein expression of PD-L1, p-JAK1/JAK1, and p-JAK2/JAK2 in tumor tissues. Greatly, den-drobine and anti-PD-L1 decreased the percentages of PD-L1+, CD11b+, and CD25+FOXP3+ cells, increased the percentages of CD4+ and CD8+cells, and enhanced the levels of IL-2, IFN-γ, and TGF-β in tumor tissues. Dendrobine demonstrated no hepatorenal toxicity to the tumor mice. The combination of dendrobine and anti-PD-L1 greatly strengthened the effects of dendrobine on tumors.</p><p><strong>Conclusion: </strong>Dendrobine inhibited tumor immune escape by suppressing the PD-1/PD-L1 checkpoint pathway, thus restricting tumor growth of lung cancer.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dendrobine Suppresses Tumor Growth by Regulating the PD-1/PD-L1 Checkpoint Pathway in Lung Cancer.\",\"authors\":\"Linmao Li, Jiejin Nong, Jingui Li, Lini Fang, Meini Pan, Haixian Qiu, Shiqing Huang, Yepeng Li, Meijuan Wei, Haiying Yin\",\"doi\":\"10.2174/0115680096305416240820040314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Dendrobine is a bioactive alkaloid isolated from Dendrobium nobile. Studies have evaluated the anti-tumor effect of dendrobine in cancers, including lung cancer. However, the mechanism of dendrobine inhibiting tumors requires further study.</p><p><strong>Methods: </strong>Bioinformatics was performed to screen the potential targets of dendrobine. The in-tersection of dendrobine and lung cancer targets was performed for KEGG analysis. CCK-8 was used to detect cell viability after dendrobine treatment. A xenograft mouse model was es-tablished to explore the effect of dendrobine on lung cancer. The percentages of PD-L1+, CD4+, CD8+, CD11b+, CD25+FOXP3+ cells, the expression of Ki-67 and caspase-3, the ex-pression of pathway-related proteins, the levels of IL-2, IFN-γ, and TGF-β, and the changes of indicators of liver and renal function were measured.</p><p><strong>Results: </strong>Dendrobine regulated the PD1/PD-L1 checkpoint signaling pathway and affected the occurrence and development of lung cancer. Dendrobine decreased the cell viability of lung cancer. Dendrobine and anti-PD-L1 decreased tumor growth, increased caspase-3 expression, and reduced Ki-67 expression in tumor tissues. Dendrobine and anti-PD-L1 suppressed pro-tein expression of PD-L1, p-JAK1/JAK1, and p-JAK2/JAK2 in tumor tissues. Greatly, den-drobine and anti-PD-L1 decreased the percentages of PD-L1+, CD11b+, and CD25+FOXP3+ cells, increased the percentages of CD4+ and CD8+cells, and enhanced the levels of IL-2, IFN-γ, and TGF-β in tumor tissues. Dendrobine demonstrated no hepatorenal toxicity to the tumor mice. The combination of dendrobine and anti-PD-L1 greatly strengthened the effects of dendrobine on tumors.</p><p><strong>Conclusion: </strong>Dendrobine inhibited tumor immune escape by suppressing the PD-1/PD-L1 checkpoint pathway, thus restricting tumor growth of lung cancer.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680096305416240820040314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680096305416240820040314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Dendrobine Suppresses Tumor Growth by Regulating the PD-1/PD-L1 Checkpoint Pathway in Lung Cancer.
Background: Dendrobine is a bioactive alkaloid isolated from Dendrobium nobile. Studies have evaluated the anti-tumor effect of dendrobine in cancers, including lung cancer. However, the mechanism of dendrobine inhibiting tumors requires further study.
Methods: Bioinformatics was performed to screen the potential targets of dendrobine. The in-tersection of dendrobine and lung cancer targets was performed for KEGG analysis. CCK-8 was used to detect cell viability after dendrobine treatment. A xenograft mouse model was es-tablished to explore the effect of dendrobine on lung cancer. The percentages of PD-L1+, CD4+, CD8+, CD11b+, CD25+FOXP3+ cells, the expression of Ki-67 and caspase-3, the ex-pression of pathway-related proteins, the levels of IL-2, IFN-γ, and TGF-β, and the changes of indicators of liver and renal function were measured.
Results: Dendrobine regulated the PD1/PD-L1 checkpoint signaling pathway and affected the occurrence and development of lung cancer. Dendrobine decreased the cell viability of lung cancer. Dendrobine and anti-PD-L1 decreased tumor growth, increased caspase-3 expression, and reduced Ki-67 expression in tumor tissues. Dendrobine and anti-PD-L1 suppressed pro-tein expression of PD-L1, p-JAK1/JAK1, and p-JAK2/JAK2 in tumor tissues. Greatly, den-drobine and anti-PD-L1 decreased the percentages of PD-L1+, CD11b+, and CD25+FOXP3+ cells, increased the percentages of CD4+ and CD8+cells, and enhanced the levels of IL-2, IFN-γ, and TGF-β in tumor tissues. Dendrobine demonstrated no hepatorenal toxicity to the tumor mice. The combination of dendrobine and anti-PD-L1 greatly strengthened the effects of dendrobine on tumors.
Conclusion: Dendrobine inhibited tumor immune escape by suppressing the PD-1/PD-L1 checkpoint pathway, thus restricting tumor growth of lung cancer.