Kazuhiko Kurozumi, Shinichiro Koizumi, Tomoya Oishi, Hiroaki Neki, Tomohiro Yamasaki
{"title":"AB028.利用外窥镜下的机器人导航对脑肿瘤进行精确神经外科手术。","authors":"Kazuhiko Kurozumi, Shinichiro Koizumi, Tomoya Oishi, Hiroaki Neki, Tomohiro Yamasaki","doi":"10.21037/cco-24-ab028","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Three-dimensional (3D) exoscope and navigation systems have recently become remarkably advanced in neurosurgery. Robotic navigation is being used in various facilities. Based on the created surgical plan, robotic navigation automatically determines the path to guide the instrument. It seamlessly integrates with continuous real-time navigation and robotic alignment functions to improve the efficiency of intraoperative workflow and support highly accurate positioning. We have achieved good results in surgeries utilizing robotic navigation at our institution, and we report on the results and prospects.</p><p><strong>Methods: </strong>At our hospital, 15 patients underwent surgery using Stealth AutoguideTM (Medtronic) in conjunction with the StealthStation S8 (Medtronic). The mean age was 56.2 years; 10 were men, and five were women. We used the exoscopic systems with KINEVO 900 (Zeiss) or ORBEYE (Olympus).</p><p><strong>Results: </strong>The cases comprised of 11 gliomas, two primary central nervous system lymphomas, one germ cell tumor, and one brain abscess. Seven biopsies (six burr holes, one craniotomy) and six fence posts were used for Stealth AutoguideTM, tubing in two cases. Biopsies were performed quickly and reliably. In the cases where fence posts were used, it was possible to position the post quickly on the target and place it accurately in the planned area to determine the extent of removal. In addition, using the 3D exoscope system allowed the surgeon to simultaneously view the operating field and navigation screen without moving the surgeon's line of sight, making the operation safer.</p><p><strong>Conclusions: </strong>Surgery using robotic navigation was performed safely and efficiently, and highly accurate positioning was achieved regardless of the surgical technique. This system is expected to continue improving the accuracy, safety, and reproducibility of surgery and reducing the burden on the patient.</p>","PeriodicalId":9945,"journal":{"name":"Chinese clinical oncology","volume":"13 Suppl 1","pages":"AB028"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AB028. Precision neurosurgery for brain tumors using robotic navigation under exoscope.\",\"authors\":\"Kazuhiko Kurozumi, Shinichiro Koizumi, Tomoya Oishi, Hiroaki Neki, Tomohiro Yamasaki\",\"doi\":\"10.21037/cco-24-ab028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Three-dimensional (3D) exoscope and navigation systems have recently become remarkably advanced in neurosurgery. Robotic navigation is being used in various facilities. Based on the created surgical plan, robotic navigation automatically determines the path to guide the instrument. It seamlessly integrates with continuous real-time navigation and robotic alignment functions to improve the efficiency of intraoperative workflow and support highly accurate positioning. We have achieved good results in surgeries utilizing robotic navigation at our institution, and we report on the results and prospects.</p><p><strong>Methods: </strong>At our hospital, 15 patients underwent surgery using Stealth AutoguideTM (Medtronic) in conjunction with the StealthStation S8 (Medtronic). The mean age was 56.2 years; 10 were men, and five were women. We used the exoscopic systems with KINEVO 900 (Zeiss) or ORBEYE (Olympus).</p><p><strong>Results: </strong>The cases comprised of 11 gliomas, two primary central nervous system lymphomas, one germ cell tumor, and one brain abscess. Seven biopsies (six burr holes, one craniotomy) and six fence posts were used for Stealth AutoguideTM, tubing in two cases. Biopsies were performed quickly and reliably. In the cases where fence posts were used, it was possible to position the post quickly on the target and place it accurately in the planned area to determine the extent of removal. In addition, using the 3D exoscope system allowed the surgeon to simultaneously view the operating field and navigation screen without moving the surgeon's line of sight, making the operation safer.</p><p><strong>Conclusions: </strong>Surgery using robotic navigation was performed safely and efficiently, and highly accurate positioning was achieved regardless of the surgical technique. This system is expected to continue improving the accuracy, safety, and reproducibility of surgery and reducing the burden on the patient.</p>\",\"PeriodicalId\":9945,\"journal\":{\"name\":\"Chinese clinical oncology\",\"volume\":\"13 Suppl 1\",\"pages\":\"AB028\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese clinical oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/cco-24-ab028\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese clinical oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/cco-24-ab028","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
AB028. Precision neurosurgery for brain tumors using robotic navigation under exoscope.
Background: Three-dimensional (3D) exoscope and navigation systems have recently become remarkably advanced in neurosurgery. Robotic navigation is being used in various facilities. Based on the created surgical plan, robotic navigation automatically determines the path to guide the instrument. It seamlessly integrates with continuous real-time navigation and robotic alignment functions to improve the efficiency of intraoperative workflow and support highly accurate positioning. We have achieved good results in surgeries utilizing robotic navigation at our institution, and we report on the results and prospects.
Methods: At our hospital, 15 patients underwent surgery using Stealth AutoguideTM (Medtronic) in conjunction with the StealthStation S8 (Medtronic). The mean age was 56.2 years; 10 were men, and five were women. We used the exoscopic systems with KINEVO 900 (Zeiss) or ORBEYE (Olympus).
Results: The cases comprised of 11 gliomas, two primary central nervous system lymphomas, one germ cell tumor, and one brain abscess. Seven biopsies (six burr holes, one craniotomy) and six fence posts were used for Stealth AutoguideTM, tubing in two cases. Biopsies were performed quickly and reliably. In the cases where fence posts were used, it was possible to position the post quickly on the target and place it accurately in the planned area to determine the extent of removal. In addition, using the 3D exoscope system allowed the surgeon to simultaneously view the operating field and navigation screen without moving the surgeon's line of sight, making the operation safer.
Conclusions: Surgery using robotic navigation was performed safely and efficiently, and highly accurate positioning was achieved regardless of the surgical technique. This system is expected to continue improving the accuracy, safety, and reproducibility of surgery and reducing the burden on the patient.
期刊介绍:
The Chinese Clinical Oncology (Print ISSN 2304-3865; Online ISSN 2304-3873; Chin Clin Oncol; CCO) publishes articles that describe new findings in the field of oncology, and provides current and practical information on diagnosis, prevention and clinical investigations of cancer. Specific areas of interest include, but are not limited to: multimodality therapy, biomarkers, imaging, tumor biology, pathology, chemoprevention, and technical advances related to cancer. The aim of the Journal is to provide a forum for the dissemination of original research articles as well as review articles in all areas related to cancer. It is an international, peer-reviewed journal with a focus on cutting-edge findings in this rapidly changing field. To that end, Chin Clin Oncol is dedicated to translating the latest research developments into best multimodality practice. The journal features a distinguished editorial board, which brings together a team of highly experienced specialists in cancer treatment and research. The diverse experience of the board members allows our editorial panel to lend their expertise to a broad spectrum of cancer subjects.