Fangping Gong, Di Cao, Xiaojian Sun, Zhuo Li, Chengxin Qu, Yi Fan, Zenghui Cao, Kai Zhao, Kunkun Zhao, Ding Qiu, Zhongfeng Li, Rui Ren, Xingli Ma, Xingguo Zhang, Dongmei Yin
{"title":"同源映射产生了一个全面的花生(Arachis hypogaea L.)预测蛋白质-蛋白质相互作用网络。","authors":"Fangping Gong, Di Cao, Xiaojian Sun, Zhuo Li, Chengxin Qu, Yi Fan, Zenghui Cao, Kai Zhao, Kunkun Zhao, Ding Qiu, Zhongfeng Li, Rui Ren, Xingli Ma, Xingguo Zhang, Dongmei Yin","doi":"10.1186/s12870-024-05580-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Protein-protein interactions are the primary means through which proteins carry out their functions. These interactions thus have crucial roles in life activities. The wide availability of fully sequenced animal and plant genomes has facilitated establishment of relatively complete global protein interaction networks for some model species. The genomes of cultivated and wild peanut (Arachis hypogaea L.) have also been sequenced, but the functions of most of the encoded proteins remain unclear.</p><p><strong>Results: </strong>We here used homologous mapping of validated protein interaction data from model species to generate complete peanut protein interaction networks for A. hypogaea cv. 'Tifrunner' (282,619 pairs), A. hypogaea cv. 'Shitouqi' (256,441 pairs), A. monticola (440,470 pairs), A. duranensis (136,363 pairs), and A. ipaensis (172,813 pairs). A detailed analysis was conducted for a putative disease-resistance subnetwork in the Tifrunner network to identify candidate genes and validate functional interactions. The network suggested that DX2UEH and its interacting partners may participate in peanut resistance to bacterial wilt; this was preliminarily validated with overexpression experiments in peanut.</p><p><strong>Conclusion: </strong>Our results provide valuable new information for future analyses of gene and protein functions and regulatory networks in peanut.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"24 1","pages":"873"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414100/pdf/","citationCount":"0","resultStr":"{\"title\":\"Homologous mapping yielded a comprehensive predicted protein-protein interaction network for peanut (Arachis hypogaea L.).\",\"authors\":\"Fangping Gong, Di Cao, Xiaojian Sun, Zhuo Li, Chengxin Qu, Yi Fan, Zenghui Cao, Kai Zhao, Kunkun Zhao, Ding Qiu, Zhongfeng Li, Rui Ren, Xingli Ma, Xingguo Zhang, Dongmei Yin\",\"doi\":\"10.1186/s12870-024-05580-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Protein-protein interactions are the primary means through which proteins carry out their functions. These interactions thus have crucial roles in life activities. The wide availability of fully sequenced animal and plant genomes has facilitated establishment of relatively complete global protein interaction networks for some model species. The genomes of cultivated and wild peanut (Arachis hypogaea L.) have also been sequenced, but the functions of most of the encoded proteins remain unclear.</p><p><strong>Results: </strong>We here used homologous mapping of validated protein interaction data from model species to generate complete peanut protein interaction networks for A. hypogaea cv. 'Tifrunner' (282,619 pairs), A. hypogaea cv. 'Shitouqi' (256,441 pairs), A. monticola (440,470 pairs), A. duranensis (136,363 pairs), and A. ipaensis (172,813 pairs). A detailed analysis was conducted for a putative disease-resistance subnetwork in the Tifrunner network to identify candidate genes and validate functional interactions. The network suggested that DX2UEH and its interacting partners may participate in peanut resistance to bacterial wilt; this was preliminarily validated with overexpression experiments in peanut.</p><p><strong>Conclusion: </strong>Our results provide valuable new information for future analyses of gene and protein functions and regulatory networks in peanut.</p>\",\"PeriodicalId\":9198,\"journal\":{\"name\":\"BMC Plant Biology\",\"volume\":\"24 1\",\"pages\":\"873\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414100/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12870-024-05580-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-024-05580-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Homologous mapping yielded a comprehensive predicted protein-protein interaction network for peanut (Arachis hypogaea L.).
Background: Protein-protein interactions are the primary means through which proteins carry out their functions. These interactions thus have crucial roles in life activities. The wide availability of fully sequenced animal and plant genomes has facilitated establishment of relatively complete global protein interaction networks for some model species. The genomes of cultivated and wild peanut (Arachis hypogaea L.) have also been sequenced, but the functions of most of the encoded proteins remain unclear.
Results: We here used homologous mapping of validated protein interaction data from model species to generate complete peanut protein interaction networks for A. hypogaea cv. 'Tifrunner' (282,619 pairs), A. hypogaea cv. 'Shitouqi' (256,441 pairs), A. monticola (440,470 pairs), A. duranensis (136,363 pairs), and A. ipaensis (172,813 pairs). A detailed analysis was conducted for a putative disease-resistance subnetwork in the Tifrunner network to identify candidate genes and validate functional interactions. The network suggested that DX2UEH and its interacting partners may participate in peanut resistance to bacterial wilt; this was preliminarily validated with overexpression experiments in peanut.
Conclusion: Our results provide valuable new information for future analyses of gene and protein functions and regulatory networks in peanut.
期刊介绍:
BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.