设计癌症筛查试验,降低晚期癌症发病率。

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2024-07-01 DOI:10.1093/biomtc/ujae097
Kehao Zhu, Ying-Qi Zhao, Yingye Zheng
{"title":"设计癌症筛查试验,降低晚期癌症发病率。","authors":"Kehao Zhu, Ying-Qi Zhao, Yingye Zheng","doi":"10.1093/biomtc/ujae097","DOIUrl":null,"url":null,"abstract":"<p><p>Before implementing a biomarker test for early cancer detection into routine clinical care, the test must demonstrate clinical utility, that is, the test results should lead to clinical actions that positively affect patient-relevant outcomes. Unlike therapeutical trials for patients diagnosed with cancer, designing a randomized controlled trial (RCT) to demonstrate the clinical utility of an early detection biomarker with mortality and related endpoints poses unique challenges. The hurdles stem from the prolonged natural progression of the disease and the lack of information regarding the time-varying screening effect on the target asymptomatic population. To facilitate the study design of screening trials, we propose using a generic multistate disease history model and derive model-based effect sizes. The model links key performance metrics of the test, such as sensitivity, to primary endpoints like the incidence of late-stage cancer. It also incorporates the practical implementation of the biomarker-testing program in real-world scenarios. Based on the chronological time scale aligned with RCT, our method allows the assessment of study powers based on key features of the new program, including the test sensitivity, the length of follow-up, and the number and frequency of repeated tests. The calculation tool from the proposed method will enable practitioners to perform realistic and quick evaluations when strategizing screening trials for specific diseases. We use numerical examples based on the National Lung Screening Trial to demonstrate the method.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413908/pdf/","citationCount":"0","resultStr":"{\"title\":\"Designing cancer screening trials for reduction in late-stage cancer incidence.\",\"authors\":\"Kehao Zhu, Ying-Qi Zhao, Yingye Zheng\",\"doi\":\"10.1093/biomtc/ujae097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Before implementing a biomarker test for early cancer detection into routine clinical care, the test must demonstrate clinical utility, that is, the test results should lead to clinical actions that positively affect patient-relevant outcomes. Unlike therapeutical trials for patients diagnosed with cancer, designing a randomized controlled trial (RCT) to demonstrate the clinical utility of an early detection biomarker with mortality and related endpoints poses unique challenges. The hurdles stem from the prolonged natural progression of the disease and the lack of information regarding the time-varying screening effect on the target asymptomatic population. To facilitate the study design of screening trials, we propose using a generic multistate disease history model and derive model-based effect sizes. The model links key performance metrics of the test, such as sensitivity, to primary endpoints like the incidence of late-stage cancer. It also incorporates the practical implementation of the biomarker-testing program in real-world scenarios. Based on the chronological time scale aligned with RCT, our method allows the assessment of study powers based on key features of the new program, including the test sensitivity, the length of follow-up, and the number and frequency of repeated tests. The calculation tool from the proposed method will enable practitioners to perform realistic and quick evaluations when strategizing screening trials for specific diseases. We use numerical examples based on the National Lung Screening Trial to demonstrate the method.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"80 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413908/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae097\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae097","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在将癌症早期检测生物标志物试验应用于常规临床治疗之前,该试验必须证明其临床实用性,也就是说,试验结果应能导致对患者相关结果产生积极影响的临床行动。与针对确诊癌症患者的治疗试验不同,设计一项随机对照试验(RCT)来证明早期检测生物标记物的临床效用与死亡率及相关终点之间的关系会带来独特的挑战。这些障碍源于疾病的长期自然发展,以及缺乏有关筛查对目标无症状人群的时变效应的信息。为便于筛查试验的研究设计,我们建议使用通用的多州疾病史模型,并推导出基于模型的效应大小。该模型将检测的关键性能指标(如灵敏度)与晚期癌症发病率等主要终点联系起来。它还结合了生物标记物检测计划在现实世界中的实际实施情况。根据与 RCT 一致的时间尺度,我们的方法可以根据新方案的关键特征(包括检测灵敏度、随访时间以及重复检测的次数和频率)评估研究力量。在制定特定疾病筛查试验战略时,建议方法中的计算工具将使从业人员能够进行现实而快速的评估。我们使用基于国家肺筛查试验的数字示例来演示该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing cancer screening trials for reduction in late-stage cancer incidence.

Before implementing a biomarker test for early cancer detection into routine clinical care, the test must demonstrate clinical utility, that is, the test results should lead to clinical actions that positively affect patient-relevant outcomes. Unlike therapeutical trials for patients diagnosed with cancer, designing a randomized controlled trial (RCT) to demonstrate the clinical utility of an early detection biomarker with mortality and related endpoints poses unique challenges. The hurdles stem from the prolonged natural progression of the disease and the lack of information regarding the time-varying screening effect on the target asymptomatic population. To facilitate the study design of screening trials, we propose using a generic multistate disease history model and derive model-based effect sizes. The model links key performance metrics of the test, such as sensitivity, to primary endpoints like the incidence of late-stage cancer. It also incorporates the practical implementation of the biomarker-testing program in real-world scenarios. Based on the chronological time scale aligned with RCT, our method allows the assessment of study powers based on key features of the new program, including the test sensitivity, the length of follow-up, and the number and frequency of repeated tests. The calculation tool from the proposed method will enable practitioners to perform realistic and quick evaluations when strategizing screening trials for specific diseases. We use numerical examples based on the National Lung Screening Trial to demonstrate the method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信