{"title":"贝叶斯非参数方法,用于处理后混杂因素的因果中介。","authors":"Woojung Bae, Michael J Daniels, Michael G Perri","doi":"10.1093/biomtc/ujae099","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a new Bayesian nonparametric method for estimating the causal effects of mediation in the presence of a post-treatment confounder. The methodology is motivated by the Rural Lifestyle Intervention Treatment Effectiveness Trial (Rural LITE) for which there is interest in estimating causal mediation effects but is complicated by the presence of a post-treatment confounder. We specify an enriched Dirichlet process mixture (EDPM) to model the joint distribution of the observed data (outcome, mediator, post-treatment confounder, treatment, and baseline confounders). For identifiability, we use the extended version of the standard sequential ignorability (SI) as introduced in Hong et al. along with a Gaussian copula model assumption. The observed data model and causal identification assumptions enable us to estimate and identify the causal effects of mediation, that is, the natural direct effects (NDE) and natural indirect effects (NIE). Our method enables easy computation of NIE and NDE for a subset of confounding variables and addresses missing data through data augmentation under the assumption of ignorable missingness. We conduct simulation studies to assess the performance of our proposed method. Furthermore, we apply this approach to evaluate the causal mediation effect in the Rural LITE trial, finding that there was not strong evidence for the potential mediator.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418020/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Bayesian nonparametric approach for causal mediation with a post-treatment confounder.\",\"authors\":\"Woojung Bae, Michael J Daniels, Michael G Perri\",\"doi\":\"10.1093/biomtc/ujae099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a new Bayesian nonparametric method for estimating the causal effects of mediation in the presence of a post-treatment confounder. The methodology is motivated by the Rural Lifestyle Intervention Treatment Effectiveness Trial (Rural LITE) for which there is interest in estimating causal mediation effects but is complicated by the presence of a post-treatment confounder. We specify an enriched Dirichlet process mixture (EDPM) to model the joint distribution of the observed data (outcome, mediator, post-treatment confounder, treatment, and baseline confounders). For identifiability, we use the extended version of the standard sequential ignorability (SI) as introduced in Hong et al. along with a Gaussian copula model assumption. The observed data model and causal identification assumptions enable us to estimate and identify the causal effects of mediation, that is, the natural direct effects (NDE) and natural indirect effects (NIE). Our method enables easy computation of NIE and NDE for a subset of confounding variables and addresses missing data through data augmentation under the assumption of ignorable missingness. We conduct simulation studies to assess the performance of our proposed method. Furthermore, we apply this approach to evaluate the causal mediation effect in the Rural LITE trial, finding that there was not strong evidence for the potential mediator.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418020/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae099\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae099","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了一种新的贝叶斯非参数方法,用于在存在治疗后混杂因素的情况下估计中介的因果效应。该方法受农村生活方式干预治疗效果试验(Rural Lifestyle Intervention Treatment Effectiveness Trial,RITE)的启发,该试验对因果中介效应的估计很感兴趣,但由于存在治疗后混杂因素而变得复杂。我们指定了一个丰富的 Dirichlet 过程混合物(EDPM)来模拟观察数据(结果、中介因素、治疗后混杂因素、治疗和基线混杂因素)的联合分布。在可识别性方面,我们使用了 Hong 等人引入的标准序列无知(SI)的扩展版本,以及高斯共轭模型假设。观察数据模型和因果识别假设使我们能够估计和识别中介的因果效应,即自然直接效应(NDE)和自然间接效应(NIE)。我们的方法可以轻松计算混杂变量子集的自然直接效应(NIE)和自然间接效应(NDE),并在可忽略缺失的假设下通过数据扩增解决缺失数据问题。我们进行了模拟研究,以评估我们提出的方法的性能。此外,我们还应用这种方法评估了农村 LITE 试验中的因果中介效应,发现并没有强有力的证据证明潜在的中介效应。
A Bayesian nonparametric approach for causal mediation with a post-treatment confounder.
We propose a new Bayesian nonparametric method for estimating the causal effects of mediation in the presence of a post-treatment confounder. The methodology is motivated by the Rural Lifestyle Intervention Treatment Effectiveness Trial (Rural LITE) for which there is interest in estimating causal mediation effects but is complicated by the presence of a post-treatment confounder. We specify an enriched Dirichlet process mixture (EDPM) to model the joint distribution of the observed data (outcome, mediator, post-treatment confounder, treatment, and baseline confounders). For identifiability, we use the extended version of the standard sequential ignorability (SI) as introduced in Hong et al. along with a Gaussian copula model assumption. The observed data model and causal identification assumptions enable us to estimate and identify the causal effects of mediation, that is, the natural direct effects (NDE) and natural indirect effects (NIE). Our method enables easy computation of NIE and NDE for a subset of confounding variables and addresses missing data through data augmentation under the assumption of ignorable missingness. We conduct simulation studies to assess the performance of our proposed method. Furthermore, we apply this approach to evaluate the causal mediation effect in the Rural LITE trial, finding that there was not strong evidence for the potential mediator.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.