{"title":"元学习认知模型视角下的综合学习:对动物和人类学习成果的影响。","authors":"Bin Yin, Xi-Dan Xiao, Xiao-Rui Wu, Rong Lian","doi":"10.1017/S0140525X2400027X","DOIUrl":null,"url":null,"abstract":"<p><p>This commentary examines the synergy between meta-learned models of cognition and integrative learning in enhancing animal and human learning outcomes. It highlights three integrative learning modes - holistic integration of parts, top-down reasoning, and generalization with in-depth analysis - and their alignment with meta-learned models of cognition. This convergence promises significant advances in educational practices, artificial intelligence, and cognitive neuroscience, offering a novel perspective on learning and cognition.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative learning in the lens of meta-learned models of cognition: Impacts on animal and human learning outcomes.\",\"authors\":\"Bin Yin, Xi-Dan Xiao, Xiao-Rui Wu, Rong Lian\",\"doi\":\"10.1017/S0140525X2400027X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This commentary examines the synergy between meta-learned models of cognition and integrative learning in enhancing animal and human learning outcomes. It highlights three integrative learning modes - holistic integration of parts, top-down reasoning, and generalization with in-depth analysis - and their alignment with meta-learned models of cognition. This convergence promises significant advances in educational practices, artificial intelligence, and cognitive neuroscience, offering a novel perspective on learning and cognition.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1017/S0140525X2400027X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/S0140525X2400027X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Integrative learning in the lens of meta-learned models of cognition: Impacts on animal and human learning outcomes.
This commentary examines the synergy between meta-learned models of cognition and integrative learning in enhancing animal and human learning outcomes. It highlights three integrative learning modes - holistic integration of parts, top-down reasoning, and generalization with in-depth analysis - and their alignment with meta-learned models of cognition. This convergence promises significant advances in educational practices, artificial intelligence, and cognitive neuroscience, offering a novel perspective on learning and cognition.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.