Ramona Werner, Lisa T Gasser, Matthias Steinparzer, Mathias Mayer, Iftekhar U Ahmed, Hans Sandén, Douglas L Godbold, Boris Rewald
{"title":"落叶混交林的早期高产是由地上和地下物种特有的适应性共同驱动的。","authors":"Ramona Werner, Lisa T Gasser, Matthias Steinparzer, Mathias Mayer, Iftekhar U Ahmed, Hans Sandén, Douglas L Godbold, Boris Rewald","doi":"10.1093/aob/mcae150","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Mixed forest plantations are increasingly recognized for their role in mitigating the impacts of climate change and enhancing ecosystem resilience. Yet, there remains a significant gap in understanding the early-stage dynamics of species trait diversity and interspecies interactions, particularly in pure deciduous mixtures. This study aims to explore the timing and mechanisms by which trait diversity of deciduous species and competitive interactions influence yield, carbon allocation and space occupation in mixed forests, both above and below ground.</p><p><strong>Methods: </strong>A forest inventory was conducted in planted monocultures, two-species and four-species mixtures of European Acer, Tilia, Carpinus and Quercus, representing a spectrum from acquisitive to conservative tree species. Effects of competition were assessed with linear mixed-effects models at the level of biomass and space acquisition, including leaf, canopy, stem and fine root traits.</p><p><strong>Key results: </strong>Early above-ground growth effects were observed 6 years post-planting, with significant biomass accumulation after 8 years, strongly influenced by species composition. Mixtures, especially with acquisitive species, exhibited above-ground overyielding, 1.5-1.9 times higher than monocultures. Fine roots showed substantial overyielding in high-diversity stands. Biomass allocation was species specific and varied markedly by tree size and the level of diversity and between acquisitive Acer and the more conservative species. No root segregation was found.</p><p><strong>Conclusions: </strong>Our findings underscore the crucial role of species trait diversity in enhancing productivity in mixed deciduous forest plantations. Allometric changes highlight the need to differentiate between (active) acclimatizations and (passive) tree size-related changes, but illustrate major consequences of competitive interactions for the functional relationship between leaves, stem and roots. This study points towards the significant contributions of both above- and below-ground components to overall productivity of planted mixed-species forests.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"1077-1096"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687630/pdf/","citationCount":"0","resultStr":"{\"title\":\"Early overyielding in a mixed deciduous forest is driven by both above- and below-ground species-specific acclimatization.\",\"authors\":\"Ramona Werner, Lisa T Gasser, Matthias Steinparzer, Mathias Mayer, Iftekhar U Ahmed, Hans Sandén, Douglas L Godbold, Boris Rewald\",\"doi\":\"10.1093/aob/mcae150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Mixed forest plantations are increasingly recognized for their role in mitigating the impacts of climate change and enhancing ecosystem resilience. Yet, there remains a significant gap in understanding the early-stage dynamics of species trait diversity and interspecies interactions, particularly in pure deciduous mixtures. This study aims to explore the timing and mechanisms by which trait diversity of deciduous species and competitive interactions influence yield, carbon allocation and space occupation in mixed forests, both above and below ground.</p><p><strong>Methods: </strong>A forest inventory was conducted in planted monocultures, two-species and four-species mixtures of European Acer, Tilia, Carpinus and Quercus, representing a spectrum from acquisitive to conservative tree species. Effects of competition were assessed with linear mixed-effects models at the level of biomass and space acquisition, including leaf, canopy, stem and fine root traits.</p><p><strong>Key results: </strong>Early above-ground growth effects were observed 6 years post-planting, with significant biomass accumulation after 8 years, strongly influenced by species composition. Mixtures, especially with acquisitive species, exhibited above-ground overyielding, 1.5-1.9 times higher than monocultures. Fine roots showed substantial overyielding in high-diversity stands. Biomass allocation was species specific and varied markedly by tree size and the level of diversity and between acquisitive Acer and the more conservative species. No root segregation was found.</p><p><strong>Conclusions: </strong>Our findings underscore the crucial role of species trait diversity in enhancing productivity in mixed deciduous forest plantations. Allometric changes highlight the need to differentiate between (active) acclimatizations and (passive) tree size-related changes, but illustrate major consequences of competitive interactions for the functional relationship between leaves, stem and roots. This study points towards the significant contributions of both above- and below-ground components to overall productivity of planted mixed-species forests.</p>\",\"PeriodicalId\":8023,\"journal\":{\"name\":\"Annals of botany\",\"volume\":\" \",\"pages\":\"1077-1096\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687630/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aob/mcae150\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae150","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Early overyielding in a mixed deciduous forest is driven by both above- and below-ground species-specific acclimatization.
Background and aims: Mixed forest plantations are increasingly recognized for their role in mitigating the impacts of climate change and enhancing ecosystem resilience. Yet, there remains a significant gap in understanding the early-stage dynamics of species trait diversity and interspecies interactions, particularly in pure deciduous mixtures. This study aims to explore the timing and mechanisms by which trait diversity of deciduous species and competitive interactions influence yield, carbon allocation and space occupation in mixed forests, both above and below ground.
Methods: A forest inventory was conducted in planted monocultures, two-species and four-species mixtures of European Acer, Tilia, Carpinus and Quercus, representing a spectrum from acquisitive to conservative tree species. Effects of competition were assessed with linear mixed-effects models at the level of biomass and space acquisition, including leaf, canopy, stem and fine root traits.
Key results: Early above-ground growth effects were observed 6 years post-planting, with significant biomass accumulation after 8 years, strongly influenced by species composition. Mixtures, especially with acquisitive species, exhibited above-ground overyielding, 1.5-1.9 times higher than monocultures. Fine roots showed substantial overyielding in high-diversity stands. Biomass allocation was species specific and varied markedly by tree size and the level of diversity and between acquisitive Acer and the more conservative species. No root segregation was found.
Conclusions: Our findings underscore the crucial role of species trait diversity in enhancing productivity in mixed deciduous forest plantations. Allometric changes highlight the need to differentiate between (active) acclimatizations and (passive) tree size-related changes, but illustrate major consequences of competitive interactions for the functional relationship between leaves, stem and roots. This study points towards the significant contributions of both above- and below-ground components to overall productivity of planted mixed-species forests.
期刊介绍:
Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide.
The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.