Lucas F Quartarolli, Fernando M DE Melo, Joaniel M Martins, Alceu T Silveira-Junior, Marcelo Nakamura, Henrique E Toma
{"title":"关于巴伊亚州雅各布特矿物及相关合成纳米锰铁氧体的新见解。","authors":"Lucas F Quartarolli, Fernando M DE Melo, Joaniel M Martins, Alceu T Silveira-Junior, Marcelo Nakamura, Henrique E Toma","doi":"10.1590/0001-3765202420240234","DOIUrl":null,"url":null,"abstract":"<p><p>Jacobsite is a relatively rare mineral of composition MnFe2O4, found in Urandi (Bahia State) in Brazil. It is also a common species in the deep-sea manganese nodules, attracting the interest of many mineral-extracting companies. Because of its spinel constitution similar to magnetite, Jacobsite is commonly called a manganese-ferrite. However, the manganese/iron content may vary substantially according to its origin, demanding specific studies in each case. The Jacobsite mineral inspired our laboratory synthesis of the analogous manganese ferrite nanoparticles. The direct synthesis by the coprecipitation method has not been successful; however, it can be carried in the presence of citrate ions, yielding strongly magnetic nanoparticles, with a maximum magnetization of 45.6 emu.g1. Although they were structurally identical to Jacobsite, the mineral from Bahia exhibited a rather weak magnetism, because it involves a ferrimagnetic coupling. For this reason, the synthetic method seems to provide a better way of obtaining strongly magnetic manganese ferrites. These magnetic nanoparticles have been investigated in detail, including their interaction with diatoms, providing interesting magnetic bio-silicate carriers in drug delivery.</p>","PeriodicalId":7776,"journal":{"name":"Anais da Academia Brasileira de Ciencias","volume":"96 suppl 1","pages":"e20240234"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New insights on the Jacobsite mineral from Bahia and related synthetic manganese-ferrite nanoparticles.\",\"authors\":\"Lucas F Quartarolli, Fernando M DE Melo, Joaniel M Martins, Alceu T Silveira-Junior, Marcelo Nakamura, Henrique E Toma\",\"doi\":\"10.1590/0001-3765202420240234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Jacobsite is a relatively rare mineral of composition MnFe2O4, found in Urandi (Bahia State) in Brazil. It is also a common species in the deep-sea manganese nodules, attracting the interest of many mineral-extracting companies. Because of its spinel constitution similar to magnetite, Jacobsite is commonly called a manganese-ferrite. However, the manganese/iron content may vary substantially according to its origin, demanding specific studies in each case. The Jacobsite mineral inspired our laboratory synthesis of the analogous manganese ferrite nanoparticles. The direct synthesis by the coprecipitation method has not been successful; however, it can be carried in the presence of citrate ions, yielding strongly magnetic nanoparticles, with a maximum magnetization of 45.6 emu.g1. Although they were structurally identical to Jacobsite, the mineral from Bahia exhibited a rather weak magnetism, because it involves a ferrimagnetic coupling. For this reason, the synthetic method seems to provide a better way of obtaining strongly magnetic manganese ferrites. These magnetic nanoparticles have been investigated in detail, including their interaction with diatoms, providing interesting magnetic bio-silicate carriers in drug delivery.</p>\",\"PeriodicalId\":7776,\"journal\":{\"name\":\"Anais da Academia Brasileira de Ciencias\",\"volume\":\"96 suppl 1\",\"pages\":\"e20240234\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais da Academia Brasileira de Ciencias\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1590/0001-3765202420240234\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais da Academia Brasileira de Ciencias","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1590/0001-3765202420240234","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
New insights on the Jacobsite mineral from Bahia and related synthetic manganese-ferrite nanoparticles.
Jacobsite is a relatively rare mineral of composition MnFe2O4, found in Urandi (Bahia State) in Brazil. It is also a common species in the deep-sea manganese nodules, attracting the interest of many mineral-extracting companies. Because of its spinel constitution similar to magnetite, Jacobsite is commonly called a manganese-ferrite. However, the manganese/iron content may vary substantially according to its origin, demanding specific studies in each case. The Jacobsite mineral inspired our laboratory synthesis of the analogous manganese ferrite nanoparticles. The direct synthesis by the coprecipitation method has not been successful; however, it can be carried in the presence of citrate ions, yielding strongly magnetic nanoparticles, with a maximum magnetization of 45.6 emu.g1. Although they were structurally identical to Jacobsite, the mineral from Bahia exhibited a rather weak magnetism, because it involves a ferrimagnetic coupling. For this reason, the synthetic method seems to provide a better way of obtaining strongly magnetic manganese ferrites. These magnetic nanoparticles have been investigated in detail, including their interaction with diatoms, providing interesting magnetic bio-silicate carriers in drug delivery.
期刊介绍:
The Brazilian Academy of Sciences (BAS) publishes its journal, Annals of the Brazilian Academy of Sciences (AABC, in its Brazilianportuguese acronym ), every 3 months, being the oldest journal in Brazil with conkinuous distribukion, daking back to 1929. This scienkihic journal aims to publish the advances in scienkihic research from both Brazilian and foreigner scienkists, who work in the main research centers in the whole world, always looking for excellence.
Essenkially a mulkidisciplinary journal, the AABC cover, with both reviews and original researches, the diverse areas represented in the Academy, such as Biology, Physics, Biomedical Sciences, Chemistry, Agrarian Sciences, Engineering, Mathemakics, Social, Health and Earth Sciences.