Meghan D Althoff, Kristina Gaietto, Fernando Holguin, Erick Forno
{"title":"与肥胖相关的哮喘:基于病理生物学的现有和新兴治疗方法概述》。","authors":"Meghan D Althoff, Kristina Gaietto, Fernando Holguin, Erick Forno","doi":"10.1164/rccm.202406-1166SO","DOIUrl":null,"url":null,"abstract":"<p><p>Although obesity-related asthma is associated with worse asthma outcomes, optimal treatment approaches for this complex phenotype are still largely unavailable. This state-of-the-art review article synthesizes evidence for existing and emerging treatment approaches for obesity-related asthma and highlights pathways that offer potential targets for novel therapeutics. Existing treatments targeting insulin resistance and obesity, including metformin and GLP-1 (glucagon-like-peptide 1) receptor agonists, have been associated with improved asthma outcomes, although GLP-1R agonist data in asthma are limited to individuals with comorbid obesity. Monoclonal antibodies approved for treatment of moderate to severe asthma generally appear to be effective in individuals with obesity, although this is based on retrospective or secondary analysis of clinical trials; moreover, although most of these asthma biologics are approved for use in the pediatric population, the impact of obesity on their efficacy has not been well studied in youth. Potential therapeutic targets being investigated include IL-6, arginine metabolites, nitro-fatty acids, and mitochondrial antioxidants, with clinical trials for each currently underway. Potential therapeutic targets include adipose tissue eosinophils and the GLP-1-arginine-advanced glycation end products axis, although data in humans are still needed. Finally, transcriptomic and epigenetic studies of \"obese asthma\" demonstrate enrichment of IFN-related signaling pathways, Rho-GTPase pathways, and integrins, suggesting that these too could represent future treatment targets. We advocate for further study of these potential therapeutic mechanisms and continued investigation of the distinct inflammatory pathways characteristic of obesity-related asthma, to facilitate effective treatment development for this unique asthma phenotype.</p>","PeriodicalId":7664,"journal":{"name":"American journal of respiratory and critical care medicine","volume":" ","pages":"1186-1200"},"PeriodicalIF":19.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568442/pdf/","citationCount":"0","resultStr":"{\"title\":\"Obesity-related Asthma: A Pathobiology-based Overview of Existing and Emerging Treatment Approaches.\",\"authors\":\"Meghan D Althoff, Kristina Gaietto, Fernando Holguin, Erick Forno\",\"doi\":\"10.1164/rccm.202406-1166SO\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although obesity-related asthma is associated with worse asthma outcomes, optimal treatment approaches for this complex phenotype are still largely unavailable. This state-of-the-art review article synthesizes evidence for existing and emerging treatment approaches for obesity-related asthma and highlights pathways that offer potential targets for novel therapeutics. Existing treatments targeting insulin resistance and obesity, including metformin and GLP-1 (glucagon-like-peptide 1) receptor agonists, have been associated with improved asthma outcomes, although GLP-1R agonist data in asthma are limited to individuals with comorbid obesity. Monoclonal antibodies approved for treatment of moderate to severe asthma generally appear to be effective in individuals with obesity, although this is based on retrospective or secondary analysis of clinical trials; moreover, although most of these asthma biologics are approved for use in the pediatric population, the impact of obesity on their efficacy has not been well studied in youth. Potential therapeutic targets being investigated include IL-6, arginine metabolites, nitro-fatty acids, and mitochondrial antioxidants, with clinical trials for each currently underway. Potential therapeutic targets include adipose tissue eosinophils and the GLP-1-arginine-advanced glycation end products axis, although data in humans are still needed. Finally, transcriptomic and epigenetic studies of \\\"obese asthma\\\" demonstrate enrichment of IFN-related signaling pathways, Rho-GTPase pathways, and integrins, suggesting that these too could represent future treatment targets. We advocate for further study of these potential therapeutic mechanisms and continued investigation of the distinct inflammatory pathways characteristic of obesity-related asthma, to facilitate effective treatment development for this unique asthma phenotype.</p>\",\"PeriodicalId\":7664,\"journal\":{\"name\":\"American journal of respiratory and critical care medicine\",\"volume\":\" \",\"pages\":\"1186-1200\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of respiratory and critical care medicine\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1164/rccm.202406-1166SO\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of respiratory and critical care medicine","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1164/rccm.202406-1166SO","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
Obesity-related Asthma: A Pathobiology-based Overview of Existing and Emerging Treatment Approaches.
Although obesity-related asthma is associated with worse asthma outcomes, optimal treatment approaches for this complex phenotype are still largely unavailable. This state-of-the-art review article synthesizes evidence for existing and emerging treatment approaches for obesity-related asthma and highlights pathways that offer potential targets for novel therapeutics. Existing treatments targeting insulin resistance and obesity, including metformin and GLP-1 (glucagon-like-peptide 1) receptor agonists, have been associated with improved asthma outcomes, although GLP-1R agonist data in asthma are limited to individuals with comorbid obesity. Monoclonal antibodies approved for treatment of moderate to severe asthma generally appear to be effective in individuals with obesity, although this is based on retrospective or secondary analysis of clinical trials; moreover, although most of these asthma biologics are approved for use in the pediatric population, the impact of obesity on their efficacy has not been well studied in youth. Potential therapeutic targets being investigated include IL-6, arginine metabolites, nitro-fatty acids, and mitochondrial antioxidants, with clinical trials for each currently underway. Potential therapeutic targets include adipose tissue eosinophils and the GLP-1-arginine-advanced glycation end products axis, although data in humans are still needed. Finally, transcriptomic and epigenetic studies of "obese asthma" demonstrate enrichment of IFN-related signaling pathways, Rho-GTPase pathways, and integrins, suggesting that these too could represent future treatment targets. We advocate for further study of these potential therapeutic mechanisms and continued investigation of the distinct inflammatory pathways characteristic of obesity-related asthma, to facilitate effective treatment development for this unique asthma phenotype.
期刊介绍:
The American Journal of Respiratory and Critical Care Medicine focuses on human biology and disease, as well as animal studies that contribute to the understanding of pathophysiology and treatment of diseases that affect the respiratory system and critically ill patients. Papers that are solely or predominantly based in cell and molecular biology are published in the companion journal, the American Journal of Respiratory Cell and Molecular Biology. The Journal also seeks to publish clinical trials and outstanding review articles on areas of interest in several forms. The State-of-the-Art review is a treatise usually covering a broad field that brings bench research to the bedside. Shorter reviews are published as Critical Care Perspectives or Pulmonary Perspectives. These are generally focused on a more limited area and advance a concerted opinion about care for a specific process. Concise Clinical Reviews provide an evidence-based synthesis of the literature pertaining to topics of fundamental importance to the practice of pulmonary, critical care, and sleep medicine. Images providing advances or unusual contributions to the field are published as Images in Pulmonary, Critical Care, Sleep Medicine and the Sciences.
A recent trend and future direction of the Journal has been to include debates of a topical nature on issues of importance in pulmonary and critical care medicine and to the membership of the American Thoracic Society. Other recent changes have included encompassing works from the field of critical care medicine and the extension of the editorial governing of journal policy to colleagues outside of the United States of America. The focus and direction of the Journal is to establish an international forum for state-of-the-art respiratory and critical care medicine.