{"title":"敲除 OLFM4 可抑制细胞凋亡和炎症反应,从而保护心肌细胞免受败血症的伤害。","authors":"Hailu Chen, Shuna Liu, Guihua Fang","doi":"10.15586/aei.v52i5.1145","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis is a systemic inflammatory response that can result in cardiac insufficiency or heart failure known as septic myocardial injury. A previous study identified OLFM4 as an important gene in sepsis through bioinformatics analysis. However, there is limited research on the regulatory functions of OLFM4 in sepsis-triggered myocardial injury, and the related molecular mechanisms remain unclear. In this study, the protein expression of OLFM4 was found to be significantly elevated in LPS-stimulated H9C2 cells, and its suppression enhanced cell proliferation and reduced cell apoptosis in LPS-triggered H9C2 cells. The inflammatory factors TNF-α, IL-6, and IL-1β were increased after LPS treatment, and these effects were mitigated after silencing OLFM4. Moreover, it was confirmed that inhibition of OLFM4 attenuated the NF-κB signaling pathway. In conclusion, the knockdown of OLFM4 protected cardiomyocytes from sepsis by inhibiting apoptosis and inflammatory responses via the NF-κB pathway. These findings provide important insights into the regulatory functions of OLFM4 in the progression of septic myocardial injury.</p>","PeriodicalId":7536,"journal":{"name":"Allergologia et immunopathologia","volume":"52 5","pages":"15-20"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knockdown of OLFM4 protects cardiomyocytes from sepsis by inhibiting apoptosis and inflammatory responses.\",\"authors\":\"Hailu Chen, Shuna Liu, Guihua Fang\",\"doi\":\"10.15586/aei.v52i5.1145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sepsis is a systemic inflammatory response that can result in cardiac insufficiency or heart failure known as septic myocardial injury. A previous study identified OLFM4 as an important gene in sepsis through bioinformatics analysis. However, there is limited research on the regulatory functions of OLFM4 in sepsis-triggered myocardial injury, and the related molecular mechanisms remain unclear. In this study, the protein expression of OLFM4 was found to be significantly elevated in LPS-stimulated H9C2 cells, and its suppression enhanced cell proliferation and reduced cell apoptosis in LPS-triggered H9C2 cells. The inflammatory factors TNF-α, IL-6, and IL-1β were increased after LPS treatment, and these effects were mitigated after silencing OLFM4. Moreover, it was confirmed that inhibition of OLFM4 attenuated the NF-κB signaling pathway. In conclusion, the knockdown of OLFM4 protected cardiomyocytes from sepsis by inhibiting apoptosis and inflammatory responses via the NF-κB pathway. These findings provide important insights into the regulatory functions of OLFM4 in the progression of septic myocardial injury.</p>\",\"PeriodicalId\":7536,\"journal\":{\"name\":\"Allergologia et immunopathologia\",\"volume\":\"52 5\",\"pages\":\"15-20\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Allergologia et immunopathologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.15586/aei.v52i5.1145\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ALLERGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Allergologia et immunopathologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15586/aei.v52i5.1145","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ALLERGY","Score":null,"Total":0}
Knockdown of OLFM4 protects cardiomyocytes from sepsis by inhibiting apoptosis and inflammatory responses.
Sepsis is a systemic inflammatory response that can result in cardiac insufficiency or heart failure known as septic myocardial injury. A previous study identified OLFM4 as an important gene in sepsis through bioinformatics analysis. However, there is limited research on the regulatory functions of OLFM4 in sepsis-triggered myocardial injury, and the related molecular mechanisms remain unclear. In this study, the protein expression of OLFM4 was found to be significantly elevated in LPS-stimulated H9C2 cells, and its suppression enhanced cell proliferation and reduced cell apoptosis in LPS-triggered H9C2 cells. The inflammatory factors TNF-α, IL-6, and IL-1β were increased after LPS treatment, and these effects were mitigated after silencing OLFM4. Moreover, it was confirmed that inhibition of OLFM4 attenuated the NF-κB signaling pathway. In conclusion, the knockdown of OLFM4 protected cardiomyocytes from sepsis by inhibiting apoptosis and inflammatory responses via the NF-κB pathway. These findings provide important insights into the regulatory functions of OLFM4 in the progression of septic myocardial injury.
期刊介绍:
Founded in 1972 by Professor A. Oehling, Allergologia et Immunopathologia is a forum for those working in the field of pediatric asthma, allergy and immunology. Manuscripts related to clinical, epidemiological and experimental allergy and immunopathology related to childhood will be considered for publication. Allergologia et Immunopathologia is the official journal of the Spanish Society of Pediatric Allergy and Clinical Immunology (SEICAP) and also of the Latin American Society of Immunodeficiencies (LASID). It has and independent international Editorial Committee which submits received papers for peer-reviewing by international experts. The journal accepts original and review articles from all over the world, together with consensus statements from the aforementioned societies. Occasionally, the opinion of an expert on a burning topic is published in the "Point of View" section. Letters to the Editor on previously published papers are welcomed. Allergologia et Immunopathologia publishes 6 issues per year and is included in the major databases such as Pubmed, Scopus, Web of Knowledge, etc.