Ting Liu, Lin Ai, Aibo Jiang, Yujuan Wang, Ruimin Jiang, Liang Liu
{"title":"黄芪皂苷 IV 能抑制人类表皮角质细胞的增殖和炎症反应,并能改善咪喹莫特诱导的小鼠牛皮癣样皮肤损伤。","authors":"Ting Liu, Lin Ai, Aibo Jiang, Yujuan Wang, Ruimin Jiang, Liang Liu","doi":"10.15586/aei.v52i5.1140","DOIUrl":null,"url":null,"abstract":"<p><p>The primary pathological features of psoriasis include excessive epidermal keratinocytes and infiltration of inflammatory cells, which are pivotal targets for psoriasis therapy. Astragaloside IV (AS-IV), the principal active compound of astragalus, exhibits anti-inflammatory, antioxidant, and immune-modulatory properties. This study aims to investigate AS-IV's anti--psoriatic effects and underlying mechanisms. Normal human epidermal keratinocytes (NHEKs) were stimulated with a combination of TNF-α, IL-17A, IL-1α, IL-22, and oncostatin M (M5) to replicate psoriatic keratinocyte pathology <i>in vitro</i>. Cell proliferation was assessed using CCK8 and EDU staining. Pro-inflammatory cytokine levels were measured via qRT-PCR. In addition, an imiquimod (IMQ)-induced psoriasis mouse model was utilized. Skin histology changes were evaluated with HE staining, while IL-6 and TNF-α levels in mouse serum were quantified using ELISA. NF-κB pathway protein expression was analyzed by western blotting. The results demonstrated that AS-IV inhibited M5-induced proliferation of NHEKs. AS-IV reduced M5-stimulated IL-1β, IL-6, IL-8, TNF-α, IL-23, and MCP-1 expression in NHEKs. Moreover, M5-induced phosphorylation of IκBα and p65 was significantly attenuated by AS-IV. Furthermore, AS-IV application ameliorated erythema, scale formation, and epidermal thickening in IMQ-induced psoriasis-like mouse models. AS-IV also decreased IL-6 and TNF-α levels in mouse serum and inhibited IκBα and p65 phosphorylation in skin tissues. However, prostratin treatment reversed these effects. These findings underscore AS-IV's capacity to mitigate M5-induced NHEK proliferation and inflammation. AS-IV shows promise in alleviating IMQ-induced psoriasis-like skin lesions and inflammation by suppressing the NF-κB pathway.</p>","PeriodicalId":7536,"journal":{"name":"Allergologia et immunopathologia","volume":"52 5","pages":"44-50"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astragaloside IV suppresses the proliferation and inflammatory response of human epidermal keratinocytes and ameliorates imiquimod-induced psoriasis-like skin damage in mice.\",\"authors\":\"Ting Liu, Lin Ai, Aibo Jiang, Yujuan Wang, Ruimin Jiang, Liang Liu\",\"doi\":\"10.15586/aei.v52i5.1140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The primary pathological features of psoriasis include excessive epidermal keratinocytes and infiltration of inflammatory cells, which are pivotal targets for psoriasis therapy. Astragaloside IV (AS-IV), the principal active compound of astragalus, exhibits anti-inflammatory, antioxidant, and immune-modulatory properties. This study aims to investigate AS-IV's anti--psoriatic effects and underlying mechanisms. Normal human epidermal keratinocytes (NHEKs) were stimulated with a combination of TNF-α, IL-17A, IL-1α, IL-22, and oncostatin M (M5) to replicate psoriatic keratinocyte pathology <i>in vitro</i>. Cell proliferation was assessed using CCK8 and EDU staining. Pro-inflammatory cytokine levels were measured via qRT-PCR. In addition, an imiquimod (IMQ)-induced psoriasis mouse model was utilized. Skin histology changes were evaluated with HE staining, while IL-6 and TNF-α levels in mouse serum were quantified using ELISA. NF-κB pathway protein expression was analyzed by western blotting. The results demonstrated that AS-IV inhibited M5-induced proliferation of NHEKs. AS-IV reduced M5-stimulated IL-1β, IL-6, IL-8, TNF-α, IL-23, and MCP-1 expression in NHEKs. Moreover, M5-induced phosphorylation of IκBα and p65 was significantly attenuated by AS-IV. Furthermore, AS-IV application ameliorated erythema, scale formation, and epidermal thickening in IMQ-induced psoriasis-like mouse models. AS-IV also decreased IL-6 and TNF-α levels in mouse serum and inhibited IκBα and p65 phosphorylation in skin tissues. However, prostratin treatment reversed these effects. These findings underscore AS-IV's capacity to mitigate M5-induced NHEK proliferation and inflammation. AS-IV shows promise in alleviating IMQ-induced psoriasis-like skin lesions and inflammation by suppressing the NF-κB pathway.</p>\",\"PeriodicalId\":7536,\"journal\":{\"name\":\"Allergologia et immunopathologia\",\"volume\":\"52 5\",\"pages\":\"44-50\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Allergologia et immunopathologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.15586/aei.v52i5.1140\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ALLERGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Allergologia et immunopathologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15586/aei.v52i5.1140","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ALLERGY","Score":null,"Total":0}
Astragaloside IV suppresses the proliferation and inflammatory response of human epidermal keratinocytes and ameliorates imiquimod-induced psoriasis-like skin damage in mice.
The primary pathological features of psoriasis include excessive epidermal keratinocytes and infiltration of inflammatory cells, which are pivotal targets for psoriasis therapy. Astragaloside IV (AS-IV), the principal active compound of astragalus, exhibits anti-inflammatory, antioxidant, and immune-modulatory properties. This study aims to investigate AS-IV's anti--psoriatic effects and underlying mechanisms. Normal human epidermal keratinocytes (NHEKs) were stimulated with a combination of TNF-α, IL-17A, IL-1α, IL-22, and oncostatin M (M5) to replicate psoriatic keratinocyte pathology in vitro. Cell proliferation was assessed using CCK8 and EDU staining. Pro-inflammatory cytokine levels were measured via qRT-PCR. In addition, an imiquimod (IMQ)-induced psoriasis mouse model was utilized. Skin histology changes were evaluated with HE staining, while IL-6 and TNF-α levels in mouse serum were quantified using ELISA. NF-κB pathway protein expression was analyzed by western blotting. The results demonstrated that AS-IV inhibited M5-induced proliferation of NHEKs. AS-IV reduced M5-stimulated IL-1β, IL-6, IL-8, TNF-α, IL-23, and MCP-1 expression in NHEKs. Moreover, M5-induced phosphorylation of IκBα and p65 was significantly attenuated by AS-IV. Furthermore, AS-IV application ameliorated erythema, scale formation, and epidermal thickening in IMQ-induced psoriasis-like mouse models. AS-IV also decreased IL-6 and TNF-α levels in mouse serum and inhibited IκBα and p65 phosphorylation in skin tissues. However, prostratin treatment reversed these effects. These findings underscore AS-IV's capacity to mitigate M5-induced NHEK proliferation and inflammation. AS-IV shows promise in alleviating IMQ-induced psoriasis-like skin lesions and inflammation by suppressing the NF-κB pathway.
期刊介绍:
Founded in 1972 by Professor A. Oehling, Allergologia et Immunopathologia is a forum for those working in the field of pediatric asthma, allergy and immunology. Manuscripts related to clinical, epidemiological and experimental allergy and immunopathology related to childhood will be considered for publication. Allergologia et Immunopathologia is the official journal of the Spanish Society of Pediatric Allergy and Clinical Immunology (SEICAP) and also of the Latin American Society of Immunodeficiencies (LASID). It has and independent international Editorial Committee which submits received papers for peer-reviewing by international experts. The journal accepts original and review articles from all over the world, together with consensus statements from the aforementioned societies. Occasionally, the opinion of an expert on a burning topic is published in the "Point of View" section. Letters to the Editor on previously published papers are welcomed. Allergologia et Immunopathologia publishes 6 issues per year and is included in the major databases such as Pubmed, Scopus, Web of Knowledge, etc.