{"title":"通过分子对接、分子动力学模拟和结合自由能计算剖析泛素特异性蛋白酶 7 (USP7) 对映体抑制剂的立体选择性。","authors":"Yusheng Zhang, Wenwen Dou, Ziqi Zhao, Guozhen Li, Chunlong Li, Xiangyu Chen, Linkai Mou","doi":"10.1007/s11030-024-10948-z","DOIUrl":null,"url":null,"abstract":"<p><p>The ubiquitin-specific protease 7 (USP7), as a member of deubiquitination enzymes, represents an attractive therapeutic target for various cancers, including prostate cancer and liver cancer. The change of the inhibitor stereocenter from the S to R stereochemistry (S-ALM → R-ALM34) markedly improved USP7 inhibitory activity. However, the molecular mechanism for the stereo-selectivity of enantiomeric inhibitors to USP7 is still unclear. In this work, molecular docking, molecular dynamics (MD) simulations, molecular mechanics/Generalized-Born surface area (MM/GBSA) calculations, and free energy landscapes were performed to address this mystery. MD simulations revealed that S-ALM34 showed a high degree of conformational flexibility compared to the R-ALM34 counterpart, and S-ALM34 binding led to the enhanced intradomain motions of USP7, especially the BL1 and BL2 loops and the two helices α4 and α5. MM/GBSA calculations showed that the binding strength of R-ALM34 to USP7 was stronger than that of S-ALM34 by - 4.99 kcal/mol, a similar trend observed by experimental data. MM/GBSA free energy decomposition was further performed to differentiate the ligand-residue spectrum. These analyses not only identified the hotspot residues interacting with R-ALM34, but also revealed that the hydrophobic interactions from F409, K420, H456, and Y514 play the major determinants in the binding of R-ALM34 to USP7. This result is anticipated to shed light on energetic basis and conformational dynamics information to aid in the design of more potent and selective inhibitors targeting USP7.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stereo-selectivity of enantiomeric inhibitors to ubiquitin-specific protease 7 (USP7) dissected by molecular docking, molecular dynamics simulations, and binding free energy calculations.\",\"authors\":\"Yusheng Zhang, Wenwen Dou, Ziqi Zhao, Guozhen Li, Chunlong Li, Xiangyu Chen, Linkai Mou\",\"doi\":\"10.1007/s11030-024-10948-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ubiquitin-specific protease 7 (USP7), as a member of deubiquitination enzymes, represents an attractive therapeutic target for various cancers, including prostate cancer and liver cancer. The change of the inhibitor stereocenter from the S to R stereochemistry (S-ALM → R-ALM34) markedly improved USP7 inhibitory activity. However, the molecular mechanism for the stereo-selectivity of enantiomeric inhibitors to USP7 is still unclear. In this work, molecular docking, molecular dynamics (MD) simulations, molecular mechanics/Generalized-Born surface area (MM/GBSA) calculations, and free energy landscapes were performed to address this mystery. MD simulations revealed that S-ALM34 showed a high degree of conformational flexibility compared to the R-ALM34 counterpart, and S-ALM34 binding led to the enhanced intradomain motions of USP7, especially the BL1 and BL2 loops and the two helices α4 and α5. MM/GBSA calculations showed that the binding strength of R-ALM34 to USP7 was stronger than that of S-ALM34 by - 4.99 kcal/mol, a similar trend observed by experimental data. MM/GBSA free energy decomposition was further performed to differentiate the ligand-residue spectrum. These analyses not only identified the hotspot residues interacting with R-ALM34, but also revealed that the hydrophobic interactions from F409, K420, H456, and Y514 play the major determinants in the binding of R-ALM34 to USP7. This result is anticipated to shed light on energetic basis and conformational dynamics information to aid in the design of more potent and selective inhibitors targeting USP7.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-10948-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10948-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Stereo-selectivity of enantiomeric inhibitors to ubiquitin-specific protease 7 (USP7) dissected by molecular docking, molecular dynamics simulations, and binding free energy calculations.
The ubiquitin-specific protease 7 (USP7), as a member of deubiquitination enzymes, represents an attractive therapeutic target for various cancers, including prostate cancer and liver cancer. The change of the inhibitor stereocenter from the S to R stereochemistry (S-ALM → R-ALM34) markedly improved USP7 inhibitory activity. However, the molecular mechanism for the stereo-selectivity of enantiomeric inhibitors to USP7 is still unclear. In this work, molecular docking, molecular dynamics (MD) simulations, molecular mechanics/Generalized-Born surface area (MM/GBSA) calculations, and free energy landscapes were performed to address this mystery. MD simulations revealed that S-ALM34 showed a high degree of conformational flexibility compared to the R-ALM34 counterpart, and S-ALM34 binding led to the enhanced intradomain motions of USP7, especially the BL1 and BL2 loops and the two helices α4 and α5. MM/GBSA calculations showed that the binding strength of R-ALM34 to USP7 was stronger than that of S-ALM34 by - 4.99 kcal/mol, a similar trend observed by experimental data. MM/GBSA free energy decomposition was further performed to differentiate the ligand-residue spectrum. These analyses not only identified the hotspot residues interacting with R-ALM34, but also revealed that the hydrophobic interactions from F409, K420, H456, and Y514 play the major determinants in the binding of R-ALM34 to USP7. This result is anticipated to shed light on energetic basis and conformational dynamics information to aid in the design of more potent and selective inhibitors targeting USP7.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;